Handbuch

GPS Ortrung- & Telematiksystem

Dokumentationsstand: 08/2015

Fleet Telematik pro-

Ihr Ansprechpartner: Stephan Grehl

Telefon :+49(0)3303-505698 Web : www.McOrtung.de Email : info@McOrtung.de

- ▶ GPS Ortung & Telematik
- Arbeitszeiterfassung
- ► Tachodownload (DTCO)
- Kühlkettenüberwachung
- ▶ Fahrerassistenzsysteme
- ▶ mit Auswertung und Analyse
- ▶ Elektronische Fahrtenbücher
- ▶ Individuelle M2M-Lösungen

INHALTSVERZEICHNIS

INHALTSVE	RZEICHNIS	2
1. RECHT	LICHER HINWEIS	4
1.1 Ha	ftung	4
1.2 Ge	währleistung	4
2. SICHE	RHEITSHINWEISE	4
3. EINSA	TZGEBIET	6
3.1 Po	sitionsbestimmung	6
3.2 Lie	ferumfang	6
3.2.1	Handbuch zum TELEMATIK SYSTEM	7
3.3 Ko	nformität des Produktes	7
3.4 Info	ormationspflicht gemäß \$18 Batteriegesetz (BattG):	7
	ILÜSSE DES TELEMATIK SYSTEMS	
4.1 GP	S-Antennenanschluss	8
4.2 GS	M-Antennenanschluss	8
4.3 RS	232-Schnittstelle für Erweiterungen (12 Volt Serie)	8
4.4 RS	232-Schnittstelle für Erweiterungen (5 Volt Serie)	9
4.5 10-	poliger Funktionsanschluss	10
-	REITUNG DES EINBAUS	
	riennummer	
5.2 Ko	mmunikations- und Datenkarte	
5.2.1	Vorbereitung der SIM-Karte	
5.2.2	Einsetzen der SIM-Karte in das TELEMATIK SYSTEM	
5.2.3	Funktionsüberprüfung der SIM-Karte	
	J DES TELEMATIK SYSTEMS	
6.1 Mo	ntageposition der Antennen	
6.1.1	GPS-Antenne	
6.1.2	GSM-Antenne	
6.1.3	Prüfung der Antennenposition	
	ntage des TELEMATIK SYSTEMS	
6.2.1	Gehäuseabmessungen	
6.2.2	Anschluss der beiden Antennen	
6.2.3	Anschluss des Anschlusskabels	
	tallation des Anschlusskabels	
6.3.1	Anschlusskabel (Lieferumfang)	
6.3.2	Belegung des Anschlusskabels	
6.3.3	Spannungsversorgung (PIN 1 und PIN 2)	
6.3.4	Meldeeingang Zündungsplus (PIN 7)	
	naltausgang (optional)	
6.4.1	Begutachtung des gelieferten Anschlusskabels	
6.4.2	Schaltausgang (PIN 3 und PIN 4)	
6.4.3	Prüfung der Last am Schaltausgang	
6.4.4	Prüfung auf induktive Last am Schaltausgang	
6.4.5	Anschlussbeispiele für den Schaltausgang	
	itere 4 Meldeeingänge (optional)	
6.5.1	Begutachtung des gelieferten Anschlusskabels	23

6.5.	2 Digitaler oder analoger Meldeeingang	23
6.5.3	3 Änderung der digitalen / analogen Charakteristika der Meldeeingänge	23
6.5.4	4 Digitaler Meldeeingang PIN 5 und PIN 6	23
6.5.	5 Analoge Meldeeingänge PIN 9 und PIN 10	24
6.6	Alarmeingang (optional)	
6.6.		
6.6.2		
6.7	Anschlusskabel, Übersicht	
	GEMEINE BEDIENUNG	
7.1	Bedienelemente	
7.1.	1 Status-LEDs	27
7.1.2		
7.2	Erstinbetriebnahme	
7.3	Betriebsbereitschaft	
7.3.		
7.3.		
7.4	Energiespar-Modus	
7.5	Lithium Ionen Akku	
	S - BEFEHLE	
8.1	Allgemeines	32
8.2	TELEMATIK SYSTEME konfigurieren	
8.3	Befehlsliste	
9. TEC	CHNISCHE SPEZIFIKATION	
9.1	Technische Daten TELEMATIK SYSTEM Tabora	39
9.2	Technische Daten GSM-Antenne	40
9.3	Technische Daten GPS-Antenne	40
9.4	GSM-Modem GL865	41
9.5	GPS-Empfänger Jupiter SL869	41
9.6	Block Diagramm TELEMATIK SYSTEM	42
9.7	Protokollbeschreibung	43
9.7.	1 allgemeines Datenprotokoll	43
9.7.	2 Statusnummern	45
ANHANG	G	
A.1	Allgemeines	48
A.1.	1 NAVSTAR GPS-System	48
A.1.	2 GLONASS GPS-System	48
A.1.	3 QZSS GPS-System	48
A.1.	4 Was sind Almanac-Daten?	48
A.1.	5 Wie genau sind GPS-Daten	49
A.1.	6 Begriff der Telematik	49
A.1.	7 SIM-Karte	50
A.1.	8 SMS-Kurznachrichten	50
A.1.	9 GPRS Datenkommunikation	51
A.2	SMS Kurzmitteilungszentrale (SMSC) einiger Mobilfunkbetreiber	52
A.3	GPRS Zugangsdaten einiger Mobilfunkbetreiber	
B.	Hinweise zur Problemlösung	54
INDEX	-	

1. RECHTLICHER HINWEIS

Dieses Handbuch wurde mit größter Sorgfalt erstellt. A.R.T.E.C.O. GmbH übernimmt jedoch keine Verantwortung bei fehlerhafter Darstellung oder Nichterwähnung technischer Zusammenhänge. Insbesondere wird eine Haftung bei Schäden, die aus der Anwendung der technischen Beschreibung resultieren sollten, ausgeschlossen.

Kein Teil dieser Beschreibung darf ohne vorherige schriftliche Genehmigung der Firma A.R.T.E.C.O. GmbH in irgendeiner Form durch Fotokopie, Mikrofilm oder andere Verfahren reproduziert oder in eine für Maschinen, insbesondere Datenverarbeitungsanlagen, verwendbare Sprache übertragen werden. Auch die Rechte der Wiedergabe durch Vortrag, Funk und Fernsehen sind vorbehalten. Diese Dokumentation und die dazugehörige Software von der Firma A.R.T.E.C.O. GmbH sind urheberrechtlich geschützt.

Bitte lesen Sie das Handbuch vor dem ersten Einsatz des TELEMATIK SYSTEMS und bewahren Sie es zur späteren Verwendung auf.

1.1 Haftung

Für Folgeschäden, die auf die Ergebnisse des TELEMATIK SYSTEMS zurückzuführen sind (GPS-Positionsdaten, GPS-Zeitdaten, anwendungsspezifische Statusmeldungen) sowie daraus resultierende Entschließungen des Kunden, wird keinerlei Haftung übernommen.

Bei Sach- oder Personenschäden, die durch unsachgemäße Handhabung oder Nichtbeachtung der Sicherheitshinweise verursacht werden, übernehmen wir keine Haftung. In solchen Fällen erlischt auch jeder Garantieanspruch.

1.2 Gewährleistung

Alle Geräte haben eine 2-jährige Garantie ab Übergabe des Gerätes an den Endkunden. Für Verlust oder Zerstörung sowie unfachmännische Handhabung lehnen wir jede Verantwortung ab.

2. SICHERHEITSHINWEISE

WARNUNG

Die Installation des TELEMATIK SYSTEMS muss so erfolgen, dass alle für das auszurüstende Fahrzeug, unter Beachtung anderer Richtlinien und Regelungen, anzuwendenden technischen Vorschriften weiterhin erfüllt werden.

Bei der Installation und Benutzung des TELEMATIK SYSTEMS sind jeweils die national gültigen Vorschriften und Verhaltensregeln zu beachten.

Die Spannungsversorgung ist beim Einsatz in einem Kraftfahrzeug über eine Kfz-Sicherung (6 Ampere) abzusichern. Das TELEMATIK SYSTEM darf nur in Kraftfahrzeugen eingesetzt werden, welche den Minuspol mit Fahrzeugmasse verbunden haben.

UNSACHGEMÄSSER EINBAU

Unsachgemäßer Einbau kann zu Schäden am Kraftfahrzeug oder am TELEMATIK SYSTEM führen. Da für den Einbau des Systems spezielle Kenntnisse und Fähigkeiten erforderlich sind, empfehlen wir, mit dem Einbau eine Fachwerkstatt zu beauftragen.

VERLETZUNGSGEFAHR

Ungeeignete Einbaustellen können Verletzungen bei einem Verkehrsunfall hervorrufen oder Sicherheitseinrichtungen unwirksam machen.

SCHÄDEN DER VERKABELUNG

Üben Sie keinen direkten Druck auf die Anschlusskabel und die Kabel der Bordelektrik aus. Beschädigte Isolierungen können Schäden verursachen und sind umgehend zu erneuern. Kabel dürfen nicht gequetscht werden, nicht scheuern und nicht auf Zug belastet werden.

SCHNELLVERBINDER, STROMDIEBE

Im Kraftfahrzeug haben Schnellverbinder (sog. Stromdiebe) nichts zu suchen und sind z.T. gar nicht zulässig. Die Schnellverbinder erzeugen keine 100% zuverlässige Verbindung, können oxydieren und später eine aufwendige Fehlersuche verursachen. Des Weiteren verringern die Stromdiebe den Kabelquerschnitt des angezapften Kabels und können einzelne Adern durchtrennen.

KURZSCHLUSS

Falsch angeschlossene Anschlusskabel oder ein Kurzschluss können zu Schäden am Kraftfahrzeug oder am TELEMATIK SYSTEM führen. Klemmen Sie die Autobatterie ab, bevor Sie mit der Installation beginnen.

BEEINFLUSSUNG DER BORDELEKTRONIK

Das TELEMATIK SYSTEM ist hinsichtlich der elektromagnetischen Verträglichkeit geprüft. Dennoch kann es bei unsachgemäßem Einbau zur Beeinflussung der Bordelektronik kommen. Beachten Sie bitte die Hinweise des Fahrzeugherstellers.

ACHTUNG

Wenn anzunehmen ist, dass ein gefahrloser Betrieb des TELEMATIK SYSTEMS nicht mehr möglich ist, so ist das SYSTEM außer Betrieb zu nehmen und gegen unbeabsichtigten Betrieb zu sichern. Ein gefahrloser Betrieb ist u.a. dann nicht mehr gegeben wenn:

- das Gerät Beschädigungen aufweist
- das Gerät nicht mehr funktioniert
- bei ungewöhnlicher Wärmeentwicklung
- bei jeder Art von Rauchbildung

AUSSENANTENNE

Die im Lieferumfang enthaltenen Antennen sind nicht für eine Montage außerhalb des Fahrzeuges vorgesehen. Die Magnethaftung des Antennenfußes ist für eine Außenmontage nicht ausreichend. Besorgen Sie sich gegebenenfalls spezielle Außenantennen.

3. EINSATZGEBIET

Das MULTI – APPLICATION TELEMATIC SYSTEM (nachstehend als TELEMATIK SYSTEM bezeichnet) ist ein GPS Ortungs- und TELEMATIK SYSTEM zur ortsungebundenen und kostengünstigen Datenübertragung sowie Fernüberwachung von Ortungs-, Mess-, Steuer- und Regelungsvorgängen per GPRS-Datenkommunikation.

Das TELEMATIK SYSTEM kann auf einfachste Weise installiert, konfiguriert und in mobile oder feststehende Geräte, Anlagen und Gebäude zu Land und Wasser integriert werden. Durch den intelligenten Energiespar-Modus ist das System hervorragend für den Einsatz in Kraftfahrzeugen oder mit Akkumulator versorgten Geräten geeignet.

Das TELEMATIK SYSTEM nutzt die vom Mobilfunknetz bereitgestellten Möglichkeiten der Kommunikation zur Übermittlung von Alarmmeldungen, Steuerbefehlen, Statusinformationen, geografischen Positionen, Zeit- und Geschwindigkeitsangaben. Das System kann auf viele individuelle Bedürfnisse und selbst für komplexe Anforderungen zur Ortung, Kommunikation, Zonenüberwachung, Messung, Steuerung und Regelung spezifisch programmiert werden.

Das TELEMATIK SYSTEM besteht aus einer Kommunikationsbox mit integriertem Quadband-Modem (D- und E-Mobilfunknetz) und einem integrierten GPS-Empfänger. Dieser übermittelt zusätzlich Angaben, die bei der satelliten-gestützten Positionsbestimmung anfallen, einschließlich einer präzisen Zeitinformation.

Das System ist mit einer auf den speziellen Einsatz- und Anwenderzweck abgestimmten und ausbaufähigen Firmware (Betriebssystem) ausgestattet.

Das TELEMATIK SYSTEM erfasst an seinen Meldeeingängen Informationen und Zustände über Meldekontakte oder Sensoren (nicht im Lieferumfang enthalten) und sendet diese zum Anwender. Andererseits kann der Anwender Steuerbefehle an das TELEMATIK SYSTEM senden, um vorher definierte Prozesse oder Ereignisse auszulösen, die Position zu erfassen oder den Status des Meldeeingangs abzufragen.

3.1 Positionsbestimmung

Das TELEMATIK SYSTEM übermittelt die vom GPS und GLONASS Satellitensystem erhaltenen Informationen (geographische Position, Geschwindigkeit, Fahrtrichtung etc.), aktuelle Zustände der Meldekontakte und des Schaltausgangs sowie Angaben zur GSM-Netzqualität und dem Netzbetreiber. Jede dieser Nachrichten/Positionsmitteilungen kann bei der **kostenpflichtigen Aufschaltung** auf das Internetportal, das **Online Service Center (OSC)**, hinsichtlich der Historie und Darstellung vom Anwender gepflegt und verwaltet werden.

3.2 Lieferumfang

Das TELEMATIK SYSTEM wird serienmäßig in einem Aluminium-Kleingehäuse des Herstellers Fischer Elektronik GmbH & Co. KG geliefert, in dem folgende Komponenten eingebaut sind:

- GSM-Modem (850, 900, 1800,1900 MHz) des Herstellers Telit Communications SPA (GL865-Quad)
- hochempfindlicher GPS-Empfänger des Herstellers Telit Communications SPA (SL869)
- Systemplatine mit Mikroprozessor Atmega 2560 und 16 MBit Datenspeicher (Flash-ROM)
- Lithium Ionen Akku zur Überbrückung eines Spannungsausfall

Im Lieferumfang des **TELEMATIK SYSTEMS** ist als Funktionszubehör enthalten:

- GSM-Antenne
- aktive GPS-GLONASS Antenne

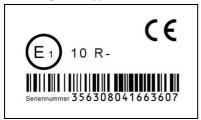
- Funktionsbuchse mit Kabel für Spannungsversorgung und Zündungsplus
- Montageklettband
- das Handbuch wird in Form eines PDF-Dokumentes zum Download bereitgestellt

3.2.1 Handbuch zum TELEMATIK SYSTEM

In das Handbuch zum TELEMATIK SYSTEM werden Änderungen und neue Entwicklungen zeitnah eingepflegt. Die aktuelle Version des Handbuches finden Sie im Internet unter:

⇒ https://arteco.de/download/ecoTRACK-Tabora/Handbuch-Telematik-System-Tabora.pdf

Weitere Informationen zum TELEMATIK SYSTEM ecoTRACK Varuna erhalten Sie unter:


⇒ https://arteco.de/download/ecoTRACK-Tabora/

3.3 Konformität des Produktes

Dem TELEMATIK SYSTEM wurde die Typengenehmigung gemäß der Regelung Nr. 10 der Wirtschaftskommission der Vereinten Nationen für Europa (UN/ECE) - Einheitliche Bedingungen für die Genehmigung der Fahrzeuge hinsichtlich der elektromagnetischen Verträglichkeit erteilt, welches durch das serienmäßig angebrachte Typengenehmigungszeichen dokumentiert wird.

Das TELEMATIK SYSTEM erfüllt ferner die notwendigen Bedingungen der Europanormen EN 55022 /12.2010 Klasse B und EN 55024 /11.2010 und wird zusätzlich mit der CE-Kennzeichnung versehen.

Abbildung eines Typenschildes:

3.4 Informationspflicht gemäß \$18 Batteriegesetz (BattG):

Im TELEMATIK SYSTEM ist ein Lithium Ionen Akku enthalten. Achten Sie darauf, dass der Akku bei Außerbetriebnahme des TELEMATIK SYSTEMS, so wie es der Gesetzgeber vorschreibt, an einer kommunalen Sammelstelle oder im Handel vor Ort zur Entsorgung abgeben wird. Die Entsorgung über den gewöhnlichen Hausmüll ist verboten und verstößt gegen das Batteriegesetz. Die Abgabe ist für Sie kostenlos.

Gerne können Sie die bei uns erworbenen Geräte / Akkus nach dem Gebrauch unentgeltlich zurückgeben. Die Rücksendung der Geräte / Akkus an Ihren Fachhändler muss in jedem Fall ausreichend frankiert erfolgen.

Batterien und Akkus, die Schadstoffe enthalten, sind mit dem oben abgebildeten Symbol einer durchgekreuzten Mülltonne deutlich erkennbar gekennzeichnet. Die eingesetzten Akkus sind frei von Blei, Cadmium und Quecksilber.

4. ANSCHLÜSSE DES TELEMATIK SYSTEMS

Das TELEMATIK SYSTEM ist mit folgenden Anschlüssen ausgestattet:

- GPS-Antennenanschluss
- GSM-Antennenanschluss
- RS232-Schnittstelle für Erweiterungen (12 Volt Serie Garmin)
- RS232-Schnittstelle für Erweiterungen (5 Volt Serie)
- 10-poliger Funktionsanschluss

4.1 GPS-Antennenanschluss

An den GPS-Anschluss des TELEMATIK SYSTEMS (SMA-Einbaubuchse) ist die im Lieferumfang enthaltene aktive GPS-Antenne anzuschrauben, die Position ist in der Abbildung markiert.

⇒ siehe Seite 14 Montageposition der Antennen

4.2 GSM-Antennenanschluss

An den GSM-Anschluss (FME-Einbaustecker) des TELEMATIK SYSTEMS ist die im Lieferumfang enthaltene GSM-Antenne anzuschrauben, die Position ist in der oberen Abbildung markiert.

4.3 RS232-Schnittstelle für Erweiterungen (12 Volt Serie)

Der serielle Schnittstellenanschluss erlaubt den Anschluss eines Navigationsgerätes der Firma GARMIN. Das Garmin muss dazu mit einer TELEMATIK Schnittstelle ausgestattet sein, das ist z.B. bei der Nüvi-Serie der Fall.

Eine weitere Anschlussmöglichkeit wurde speziell für Fuhrunternehmer entwickelt, um die Daten des digitalen Tachographen (DTCO) auszulesen und auf den Arbeitsplatz-PC zu übertragen (Remotedownload).

Ein vorgefertigtes 4-pol. Anschlusskabel mit passender Kabeldose ist als Zubehör über Ihren Fachhändler zu beziehen.

Projektorientiert binden wir gerne weitere anwenderspezifische Protokolle ein.

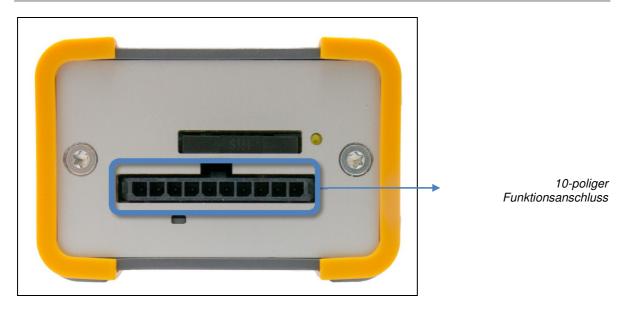
serielle Schnittstelle für Navigationsgerät Typ "Garmin" (Einbaustecker 4-pol.)

serielle Schnittstelle für Erweiterungen 5 Volt Serie (Einbaudose 4-pol.)

vergrößerte Abbildung der RS232-Schnittstelle für Erweiterungen:

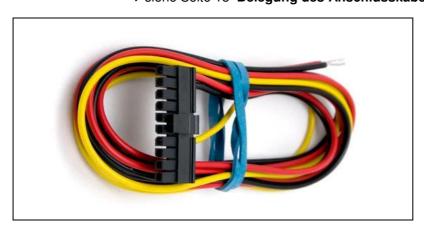
PIN	Kabelfarbe	Funktion	Beschreibung
1	Weiß	Rx	Empfangsdaten
2	Blau	GND	Masse [Negativpotential]
3	Schwarz	Tx	Sendedaten
4	Braun	pwr / Power	Die Spannungsversorgung des TELEMATIK SYSTEMS (10 bis 28 Volt) wird hier durchgeschleift und mit einer Sicherung von 2 Ampere abgesichert.

4.4 RS232-Schnittstelle für Erweiterungen (5 Volt Serie)


Der zweite serielle Schnittstellenanschluss erlaubt den Anschluss von zusätzlichen Komponenten wie der mobilen Arbeitszeiterfassung (MAE), eines Barcodelesers, einer Anhängererkennung oder eines Debug-Kabels. An dieser Schnittstelle steht eine Kleinspannung von +4,7 Volt zur Versorgung der angeschlossenen Komponente sowie RX / TX Empfangs- und Sendedaten zur Verfügung.

vergrößerte Abbildung der RS232-Schnitts3telle für Erweiterungen:

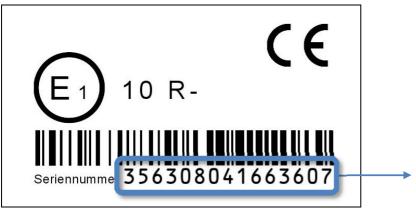
Ein vorgefertigtes 4-pol. Anschlusskabel mit passendem **Kabelstecker** ist als Zubehör über Ihren Fachhändler zu beziehen.


PIN	Kabelfarbe	Funktion	Beschreibung
1	Weiß	Rx	Empfangsdaten
2	Blau	GND	Masse [Negativpotential]
3	Schwarz	Tx	Sendedaten
4	Braun	5 Volt	Kleinspannungsausgang + 5 Volt

4.5 10-poliger Funktionsanschluss

Über den 10-pol. Funktionsanschluss wird das TELEMATIK SYSTEM mit der Betriebsspannung versorgt, dazu wird hier das Anschlusskabel für Spannungsversorgung, Sensoren und Schaltkontakt eingesteckt. Die Belegung der PINs wird in einem nachfolgenden Abschnitt erläutert.

⇒ siehe Seite 18 Belegung des Anschlusskabels


5. VORBEREITUNG DES EINBAUS

5.1 Seriennummer

Jedem TELEMATIK SYSTEM wird eine eindeutige Seriennummer zugewiesen, welche mittels eines elektronischen Bauelementes gewonnen wird. Die Seriennummer wird benötigt, um beispielsweise mit einem SMS-Befehl das System gezielt anzusteuern. Die Seriennummer befindet sich auf dem am Gehäuse aufgebrachten Typenschild, welches die Seriennummer als 15stellige Zahl und als Barcode verschlüsselt zeigt. Des Weiteren beinhaltet das Typenschild die E1 Typengenehmigungsnummer und die CE Kennzeichnung.

Notieren Sie sich bitte die Seriennummer Ihres TELEMATIK SYSTEMS, da diese Nummer für einige Anwendungen benötigt wird.

vergrößerte Abbildung eines Typenschildes mit Seriennummer:

Seriennummer

5.2 Kommunikations- und Datenkarte

Wenn Sie das <u>TELEMATIK SYSTEM zusammen mit einer Daten SIM-Karte</u> von Ihrem Fachhändler erworben haben, hat Ihr Fachhändler die SIM-Karte bereits in das System eingesetzt, das SYSTEM geprüft und vorkonfiguriert. Sie können damit den kompletten <u>Abschnitt 5.2 überspringen</u>.

Die Datenübertragung erfolgt über das GSM-Mobilfunknetz im Frequenzbereich von 850/900 MHz (D1- und D2-Netz) und 1800/1900 MHz (E-Netz) mittels GPRS-Datenkommunikation oder SMS-Kurzmitteilung (SMS / Short Message Service) an ein internetfähiges Mobilfunktelefon oder an ein Leitstellensystem (PC / Notebook).

Zum Betrieb des TELEMATIK SYSTEMS wird eine SIM-Karte für das D-Netz oder E-Netz benötigt, diese ist durch den Anwender bereitzustellen. Es können sowohl 1,8 Volt wie auch 3 Volt SIM-Karten im "ID 000" Format (25 x 15 mm) verwendet werden.

ZUSATZKOSTEN

Durch die Nutzung der SIM-Karte entstehen Zusatzkosten in Form von einmaliger Bereitstellungsgebühr, monatlicher Grundgebühr und Verbindungsentgelten. Die Kosten ersehen Sie in den Tariftabellen der jeweiligen Mobilfunknetzbetreiber.

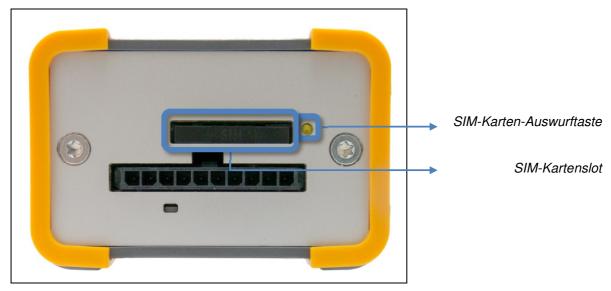
5.2.1 Vorbereitung der SIM-Karte

Bitte bereiten Sie die SIM-Karte für das TELEMATIK SYSTEM wie folgt vor:

- ✓ Die SIM-Karte muss für den Versand von SMS-Kurzmitteilungen und für die GPRS-Daten-Kommunikation freigeschaltet sein. Bitten Sie gegebenenfalls die Serviceabteilung des Telefonkartenanbieters um Hilfe.
- ✓ Die PIN-Nummer der SIM-Karte muss vor dem Einbau in das TELEMATIK SYSTEM auf "0000" gesetzt werden. Zum Ändern der PIN-Nummer legen Sie die SIM-Karte in ein Mobilfunktelefon ein und ändern die PIN mit folgender Tastenkombination:

**04*<alte-PIN>*0000*0000#

- ✓ Versenden Sie mit der SIM-Karte eine SMS-Kurzmitteilung um die Funktion der SIM-Karte zu prüfen. Überprüfen Sie dabei bitte auch die Rufnummer der SIM-Karte.
- ✓ Auf der SIM-Karte dürfen sich **keine gespeicherten SMS-Kurzmitteilungen** befinden. Bitte löschen Sie ggf. alle SMS-Kurzmitteilungen auf der SIM-Karte.
- ✓ Eventuell abonnierte **SMS-Dienste müssen deaktiviert** werden. Bitten Sie gegebenenfalls die Serviceabteilung des Telefonkartenanbieters um Hilfe. Alle **Rufumleitungen** z.B. zur Mailbox müssen **deaktiviert** werden.
- ✓ Gewährleisten Sie bei der Nutzung von Prepaid-Karten (z.B. Simyo), dass diese ein **ausreichendes Guthaben** (Kommunikationsentgelt) aufweisen.



HINWEIS

Das TELEMATIK SYSTEM prüft aus Sicherheitsgründen die eingesetzte SIM-Karte auf Gültigkeit der PIN.

5.2.2 Einsetzen der SIM-Karte in das TELEMATIK SYSTEM

Gewöhnlich wird dieses TELEMATIK SYSTEM bereits mit einer eingesetzten und überprüften SIM-Karte ausgeliefert.

- ✓ Durch einen leichten Druck auf die versenkte **gelbe Auswurftaste** mit einem kleinen spitzen Gegenstand z.B. einer aufgebogenen Büroklammer wird der SIM-Kartenschlitten herausgefahren.
- ✓ Legen Sie die SIM-Karte in den SIM-Kartenhalter ein und schieben beides in den SIM-Kartenslot des TELEMATIK SYSTEMS hinein.
- ✓ Zum Erkennen einer neuen SIM-Karte muss das GSM-Modem neu initialisiert werden. Trennen Sie das TELEMATIK SYSTEM dazu bitte von der Spannungsquelle, indem Sie den 10-poligen Anschlussstecker kurz aus der Funktionsbuchse lösen, um das TELEMATIK SYSTEM neu zu starten.

5.2.3 Funktionsüberprüfung der SIM-Karte

Wie empfehlen Ihnen bereits an dieser Stelle (also vor dem Einbau in das Fahrzeug) kurz zu überprüfen, ob sich das TELEMATIK SYSTEM korrekt in das GSM-Mobilfunknetz einbucht.

✓ Verbinden Sie dazu die mitgelieferte GSM-Antenne mit dem GSM-Anschluss.

⇒ siehe Seite 8 GSM-Antennenanschluss

✓ Schließen Sie das Anschlusskabel an eine Gleichspannungsquelle mit einer Spannung zwischen + 10 Volt bis + 28 Volt an und verbinden Sie den Anschlussstecker mit dem TELEMATIK SYSTEM.

⇒ siehe Seite 18 Anschlusskabel

✓ Beobachten Sie bitte den Zustand der Status-LEDs. Nach Anschluss an die Spannungsquelle sollten die beiden LEDs kurz Gelb blinken und dann Rot leuchten.

✓ Beobachten Sie nun die GSM-LED (neben der Gravur "GSM"). Leuchtet die GSM-LED Grün, dann war die kleine Überprüfung erfolgreich und das GSM-Modem hat sich in eine Mobilfunkzelle mit einer Feldstärke von 20 oder besser eingebucht. Der Zustand der SAT-LED wird bei diesem Test nicht ausgewertet.

6. EINBAU DES TELEMATIK SYSTEMS

6.1 Montageposition der Antennen

Die Montageposition der Antennenelemente hat entscheidenden Einfluss auf die Verfügbarkeit und die Genauigkeit der gewonnenen Positionsdaten. Montieren Sie die beiden Antennen aber nicht in die Nähe von Lautsprechern, um Störungen im Audiosystem zu vermeiden.

Das TELEMATIK SYSTEM benötigt zur Funktion den Anschluss zweier Antennen:

- GPS-Antenne (zur Erfassung geographischer Positionsdaten)
- GSM-Antenne (zum Versand und Empfang von Informationen im Mobilfunknetz)

AUSSENANTENNE

Die im Lieferumfang enthaltenen Antennen sind nicht für eine Montage außerhalb des Fahrzeuges vorgesehen. Die Magnethaftung des Antennenfußes ist für eine Außenmontage nicht ausreichend. Besorgen Sie sich gegebenenfalls spezielle Außenantennen.

6.1.1 GPS-Antenne

Das Antennenelement der mitgelieferten GPS-Antenne hat folgende Größe:

41 mm (Tiefe) x 34 mm (Breite) x 14 mm (Höhe)

Abbildung: GPS-Antenne:

Um einen optimalen Empfang Satellitensignale zu gewährleisten, muss die GPS-Antenne über freie Sicht zum Himmel verfügen. Keinesfalls darf die Antenne unter metallischen oder abschirmenden elektromagnetisch Materialien wie metallbedampften Scheiben oder Wärmeschutzverglasung angebracht werden. Damit ein Fahrtrichtungswechsel die Empfangsbedingungen nicht plötzlich ändert, ist die GPS-Antenne waagerecht, also horizontal, zu montieren (die Spitze des Richtungspfeils zeigt nach oben). Die GPS Antenne darf nicht direkt neben einer bereits vorhandenen GPS-Antenne montiert werden.

Geeignete Montagepositionen für die GPS Antenne:

- auf dem Armaturenbrett nahe der Windschutzscheibe
- verdeckt unter dem Armaturenbrett nahe der Windschutzscheibe
- auf oder unter der Hutablage nahe der Heckscheibe
- hinter bzw. unter äußeren Kunststoffverkleidungen (Stoßstangen, Lüftungsgittern,

Scheibenwischerabdeckungen aus Kunststoff)

auf dem Fahrzeugdach (waschanlagentaugliche Außenantenne erforderlich)

6.1.2 GSM-Antenne

Das Antennenelement der mitgelieferten GSM-Antenne hat folgende Größe:

■ 31 mm (Durchmesser, Antennenfuß) x 72 mm (Höhe)

Abbildung GSM-Antenne:

Die Positionierung der GSM-Antenne ist weniger kritisch. Die GSM-Antenne darf ebenfalls nicht von metallischen Gegenständen abgeschirmt werden. Um die Empfangseigenschaften zu verbessern, ist die Antenne senkrecht, also vertikal, zu montieren. Der Magnetfuß ist auf eine Metallfläche zu setzen.

6.1.3 Prüfung der Antennenposition

Prüfen Sie die Montageposition der Antennen mit einem kurzen Funktionstest, um Störungen im Audiosystem des Fahrzeuges zu vermeiden:

- ✓ Die Antennen wurden bereits an die vorgesehene Position gesetzt und werden für diesen Test provisorisch an das TELEMATIK SYSTEM angeschlossen.
- ✓ Das TELEMATIK SYSTEM wird für den Test provisorisch an die Spannungsversorgung und Zündung angeschlossen.
- ✓ Schalten Sie das Autoradio bzw. das Audiosystem im KFZ ein und stellen den Lautstärkeregler auf "0".
- ✓ Schalten Sie die Zündung ein, das TELEMATIK SYSTEM bucht sich dadurch ins GSM-Netz ein und überträgt ein Datenpaket.

Wenn bei diesem Test Störgeräusche im Audiosystem hörbar sind, versetzten Sie bitte die Antennen.

6.2 Montage des TELEMATIK SYSTEMS

Das **Aluminium-Kleingehäuse** lässt sich einfach und unkompliziert an beliebiger Stelle und Position mit dem beiliegenden Montageklettband fixieren. Wählen Sie bitte eine leicht zugängliche Stelle im Fahrzeuginnenraum um gegebenenfalls den Status der LEDs abzulesen oder ein RESET durchzuführen.

WARNUNG

Direktberührung des Gehäuses mit offenem Pluspotential kann zum Kurzschluss führen und ist deshalb zu verhindern.

6.2.1 Gehäuseabmessungen

Das TELEMATIK SYSTEM hat folgende Größe:

• 93 mm (Länge mit Anschlüssen) x 64 mm (Breite) x 43 mm (Höhe)

Abbildung Gehäuse mit Blick auf die Antennenanschlüsse:

In das Gehäuse dürfen **keine Löcher** gebohrt werden, um eine eventuelle mechanische Montage zu vereinfachen.

6.2.2 Anschluss der beiden Antennen

Fädeln Sie die Anschlusskabel der GPS-Antenne und der GSM-Antenne zum TELEMATIK SYSTEM durch. Ziehen Sie die Überwurfmuttern der Antennenstecker mit einem Schraubenschlüssel, Schlüsselweite 8, gefühlvoll fest.

6.2.3 Anschluss des Anschlusskabels

Verbinden Sie das mitgelieferte Anschlusskabel mit der Funktionsbuchse des TELEMATIK SYSTEMS. Das Anschlusskabel verfügt über einen Riegel und kann sich nicht selbständig lösen.

6.3 Installation des Anschlusskabels

Sicherheitstechnischer Hinweis:

Die Installation des TELEMATIK SYSTEMS muss so erfolgen, dass alle für das auszurüstende Fahrzeug, unter Beachtung anderer Richtlinien und Regelungen, anzuwendenden technischen Vorschriften weiterhin erfüllt werden.

Bei der Installation und Benutzung des TELEMATIK SYSTEMS sind jeweils die national gültigen Vorschriften und Verhaltensregeln zu beachten.

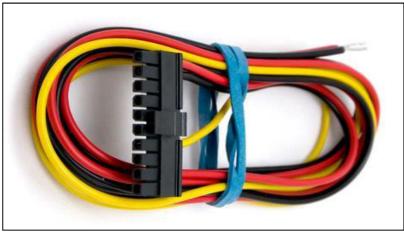
Schnellverbinder, Stromdiebe

Im Kraftfahrzeug haben Schnellverbinder (sog. Stromdiebe) nichts zu suchen und sind z.T. gar nicht zulässig. Die Schnellverbinder erzeugen keine 100% zuverlässige Verbindung, können oxydieren und später eine aufwendige Fehlersuche verursachen. Des Weiteren verringern die Stromdiebe den Kabelquerschnitt des angezapften Kabels und können bei mehrdrahtigen Leitern einzelne Adern vollständig durchtrennen.

Verwenden Sie zum Anschluss der Kabel für die Spannungsversorgung, Masse und Zündungsplus an die KFZ-Elektrik bitte eine **Quetsch- bzw. Crimpverbindung**. Die Verbindungselemente werden im Einzelhandel als "Endverbinder isoliert", "Parallelverbinder isoliert" und "Stoßverbinder isoliert" bezeichnet und müssen **passend zum Kabelquerschnitt** verwendet werden. Die Quetschung muss dabei mit einer zum Verbinder passenden professionellen Crimpzange ausgeführt werden. Brauchbare Zangen haben einen Rastmechanismus, der erst nach Erreichen des nötigen Pressdrucks wieder öffnet. Die Verbinder gibt es auch mit Heißkleber beschichteten Schrumpfschlauch, wodurch die Verbindungen besser vor Korrosion geschützt werden.

Lüsterklemmen dürfen nur in Verbindung mit aufgecrimpten Aderendhülsen verwendet werden.

WAGO Verbindungsklemmen können ein-, mehr-, und feindrähtige Leiter mit verschiedenen Querschnitten mit einer Klemme verbinden. Einfach den Betätigungshebel öffnen, den ab isolierten



Leiter einlegen, Hebel schließen, fertig! Die Klemmen der WAGO Serie 222 sind geeignet für feindrähtige Leiter von 0,08 mm² bis 4 mm² und für ein- und mehrdrähtige Leiter bis 2,5 mm². Die Verbindungsklemmen sind laut Herstellerangaben für den Kfz-Bereich geeignet, wartungsfrei und besitzen alle notwendigen Zulassungen um weltweit eingesetzt zu werden.

6.3.1 Anschlusskabel (Lieferumfang)

Das Anschlusskabel (10-poliger Buchsenstecker des Herstellers MOLEX) wird mit drei montierten Kabeln (Länge 1 Meter) ausgeliefert. Eine Nachbestückung des Buchsensteckers mit weiteren Kabeln ist möglich.

Abbildung Anschlusskabel:

6.3.2 Belegung des Anschlusskabels

Ansch	Anschlusskabel, Lieferumfang			
PIN	Kabelfarbe	Beschreibung	KFZ Klemmbelegung	
1	Rot	Spannungsversorgung (+ 10 bis + 28 Volt)	Klemme 30	
2	Schwarz	GND, Masse	Klemme 31, Massekabel im KFZ meist Braun	
7	Gelo	Meldeeingang zur Auswertung der Zündungssituation	Klemme 15, Kabel im KFZ meist schwarz	

PIN 1, PIN 2 und PIN 7 sind für die korrekte Funktionsweise des TELEMATIK SYSTEMS immer gemäß Klemmbelegung anzuschließen. Auch nach Ausschalten der Zündung muss im Fahrzeug eine Spannungsversorgung zum Betrieb des TELEMATIK SYSTEMS zur Verfügung stehen.

WARNUNG

Beachten Sie bitte alle SICHERHEITSHINWEISE

⇒ siehe Seite 4 Sicherheitshinweise

6.3.3 Spannungsversorgung (PIN 1 und PIN 2)

PIN	Kabelfarbe	Beschreibung	KFZ Klemmbelegung
1	Rot	Spannungsversorgung (+ 10 bis + 28 Volt DC, Gleichspannung)	Klemme 30
2	Schwarz	GND, Masse	Klemme 31, Massekabel im KFZ meist Braun

Über das im Lieferumfang enthaltene Anschlusskabel ist das TELEMATIK SYSTEM an eine Gleichspannungsquelle mit einer Spannung zwischen + 10 Volt bis + 28 Volt anzuschließen. Es ist zu gewährleisten, dass auch nach Ausschalten der Zündung das Spannungspotential zur Verfügung steht. Durch die interne Schutzschaltung wirkt sich ein Vertauschen der Anschlussbelegung nicht schädigend aus.

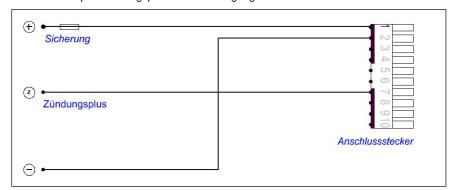
WARNUNG

Die Spannungsversorgung ist beim Einsatz in einem Fahrzeug über eine Kfz-Sicherung (6 bis 10 Ampere) abzusichern. Das TELEMATIK SYSTEM darf nur in Kraftfahrzeugen eingesetzt werden, welche den Minuspol mit Fahrzeugmasse verbunden haben.

ACHTUNG

Das TELEMATIK SYSTEM hat **keinen** Ein/Aus Schalter. Nach Anschluss an eine Spannungsquelle **initialisiert sich das System selbständig**.

6.3.4 Meldeeingang Zündungsplus (PIN 7)


PIN	Kabelfarbe	Beschreibung	KFZ Klemmbelegung
7	Gelb	Meldeeingang zur Auswertung der Zündungssituation	Klemme 15, Kabel im KFZ meist Schwarz

Das Zündschloss hat gewöhnlich 4 Stellungen. Wir empfehlen, das Zündungssignal direkt von Klemme 15, also Zündschlossposition 3, zu gewinnen. Es ist ebenso möglich, dass Ihr Einbaupartner Klemme 15r nimmt. Damit würde sich nur die Start / Stop Erzeugung geringfügig ändern.

Zünd	Zündschloss Stellungen				
Pos	Kurzbe- zeichnung	Beschreibung	KFZ-Klemme (ohne Gewähr)		
1	Lock	Lenkradarretierung im abgezogenen Zustand.	S-Kontakt, 86s, ACC		
2	ACC	Stromversorgung vom Zubehör (Autoradio), dabei ist die Zündung noch nicht eingeschaltet.	15r, R, SU, X		
3	On	Stromversorgung von Zündung, Motormanagement, Einspritzpumpe.	15 bzw. IG		
4	Start	Einschalten des elektrischen Anlassers	ST		

Mit Einschalten der Zündung im Kraftfahrzeug werden die ermittelten Positionsdaten sowie Situationen weiterer Meldeeingänge regelmäßig zum Online Service Center (OSC) übertragen.

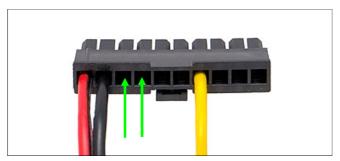
Anschlussbeispiel Zündungsplus am Meldeeingang 3:

Der Meldeeingang wird über PIN 7 mit Zündungsplus verbunden, durch einen hochohmigen Widerstand wird der Stromfluss begrenzt.

HINWEIS

PIN 7 (Gelbes Kabel) zur Auswertung der Zündungssituation ist immer mit Zündungsplus zu verbinden, da Positionsmeldungen erst mit Einschalten der Zündung versandt werden. Wird das TELEMATIK SYSTEM nicht in einem Kraftfahrzeug eingesetzt, belegen Sie PIN 7 bitte ebenfalls mit Plus.

Charakteristika der Gleichspannungspegel des Meldeeingang (Zündungsplus):


Zündung
 AUS
 PIN 7 = 0 Volt bis + 8,3 Volt

■ Zündung **EIN** PIN 7 = +8,3 Volt bis max. +33 Volt (ca. 0,2 mA)

6.4 Schaltausgang (optional)

Das TELEMATIK SYSTEM enthält einen Schalttransistor (PVG612S), welcher wie ein Relais ein externes Geräte potentialfrei schalten kann.

6.4.1 Begutachtung des gelieferten Anschlusskabels

Das Buchsengehäuse des Anschlusskabels wird an den in der Abbildung grün markierten PINs mit zusätzlichen Kabeln bestückt. Stecken Sie die lose gelieferten grünen Crimpkabel in das Buchsengehäuse des Anschlusskabels auf PIN 3 und PIN 4 (siehe Markierung) ein. Die Crimpkabel (Grün) erhalten sie von Ihrem Fachhändler.

6.4.2 Schaltausgang (PIN 3 und PIN 4)

PIN	Kabelfarbe	Beschreibung	KFZ Klemmbelegung
3	Grün	potentialfreier Schaltausgang	
4	Grün	(Normalzustand offen) max. 33 Volt AC/DC, max. 1 Ampere)	optional

Funktionsweise: Mit dem SMS-Befehl on oder ein wird der Schaltransistor des TELEMATIK SYSTEMS den PIN 3 und PIN 4 elektrisch leitend verbinden (Schließkontakt). Mit dem SMS-Befehlen off oder aus wird der Schalter geöffnet.

⇒ siehe Seite 36 Übersicht der SMS-Befehle

Beispiel: Um eine Lampe oder ein Relais zu schalten, ist PIN 3 mit positivem Potential (+) zu belegen, ein Kontakt des Verbrauchers wird an PIN 4 angeschlossen, der andere Kontakt des Verbrauchers wird in diesem Beispiel mit Masse (GND) verbunden. Auf den folgenden Seiten werden einige Anschlussbeispiele vorgestellt.

6.4.3 Prüfung der Last am Schaltausgang

Prüfen Sie, ob der Verbraucher die im folgenden Abschnitt genannten zulässigen Belastungen überschreitet. Ist dies der Fall, schalten Sie ein Kfz-Relais zwischen.

Zulässige Belastung des Schaltausgangs PIN 3 und PIN 4:

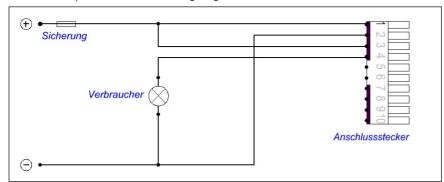
Schaltausgang Dauerbelastung: 1 Ampere
 Schaltausgang Impulslast (max. 100 ms Dauer): 2,4 Ampere

Schaltausgang Spannungsbelastung: max. 33 Volt (AC/DC)

6.4.4 Prüfung auf induktive Last am Schaltausgang

Wird eine induktive Last (z.B. ein Relais oder eine Hupe) an den Schaltausgang angeschlossen, sind induktive Überspannungen durch eine geeignete Freilaufdiode abzufangen. Wir empfehlen den Einsatz eines Relais, welches bereits mit einer Freilaufdiode ausgestattet ist, dabei ist die Polung

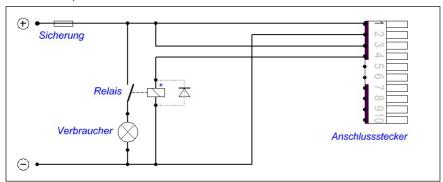
beim Anschluss des Relais zu beachten. In den nachfolgenden Beispielen ist die Freilaufdiode gestrichelt eingezeichnet.


ACHTUNG

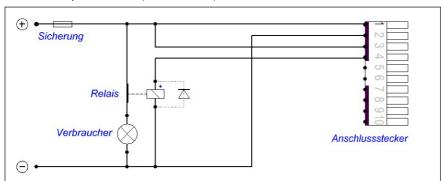
Wird eine induktive Last (z.B. Relais oder Hupe) an den Schaltausgang angeschlossen, sind induktive Überspannungen durch eine geeignete Freilaufdiode abzufangen.

6.4.5 Anschlussbeispiele für den Schaltausgang

6.4.5.1 Anschlussbeispiel für masseseitige Lasten

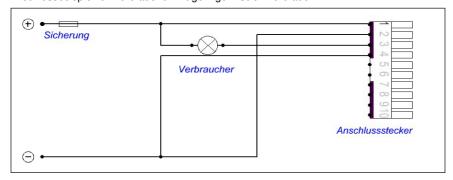

Anschlussbeispiel für Verbraucher mit geringem Stromverbrauch:

Wie ein Relais wird PIN 3 mit Plus-Potential belegt, ein Kontakt des Verbrauchers wird an PIN 4 angeschlossen, der andere Kontakt des Verbrauchers wird mit Masse (GND) verbunden.

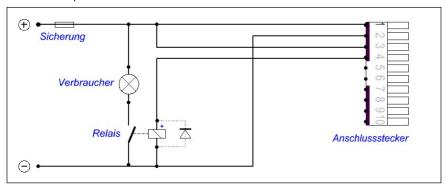

6.4.5.2 Anschlussbeispiel für masseseitige Lasten mit Strombedarf über 1 Ampere

Anschlussbeispiel mit Relais:

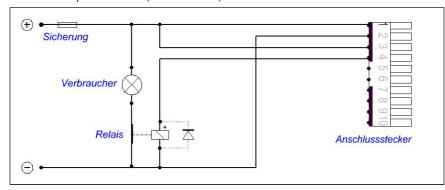
6.4.5.3 weiteres Anschlussbeispiel für masseseitige Lasten mit Strom über 1 Ampere


Anschlussbeispiel mit Relais (Öffner Kontakt):

In diesem
Anschlussbeispiel
wird ein Relais mit
Öffnungskontakt
verwendet um einen
Verbraucher durch
den Schaltausgang
gezielt
auszuschalten.


6.4.6.1 Anschlussbeispiel für plusseitige Lasten

Anschlussbeispiel für Verbraucher mit geringem Stromverbrauch:


6.4.6.2 Anschlussbeispiel für plusseitige Lasten mit Strombedarf über 1 Ampere

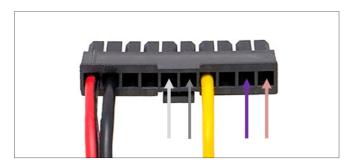
Anschlussbeispiel mit Relais:

6.4.6.3 weiteres Anschlussbeispiel für plusseitige Lasten mit Strombedarf über 1 Ampere

Anschlussbeispiel mit Relais (Öffner Kontakt):

In diesem
Anschlussbeispiel
wird ein Relais mit
Öffnungskontakt
verwendet um einen
Verbraucher durch
den Schaltausgang
gezielt
auszuschalten.

6.4.7.1 Anschlussbeispiel mit separater Kleinspannungsquelle


Anschlussbeispiel für Verbraucher mit separater Kleinspannungsquelle:

6.5 weitere 4 Meldeeingänge (optional)

Die Meldeeingänge werten elektrische Spannungen aus und melden den Wert der Messspannung dem Empfänger, also zum Online Service Center (OSC).

6.5.1 Begutachtung des gelieferten Anschlusskabels

Das Buchsengehäuse des Anschlusskabels wird an den in der Abbildung markierten PIN's mit einem zusätzlichen Kabel bestückt. Stecken Sie das ggf. lose gelieferte weiße, graue, violette oder rosa Crimpkabel in das Buchsengehäuse des Anschlusskabels in die markierten Positionen PIN 5, PIN 6, PIN 9, PIN 10 ein. Die losen Crimpkabel (Weiß, Grau, Violett oder Rosa) erhalten Sie von Ihrem Fachhändler.

6.5.2 Digitaler oder analoger Meldeeingang

Der digitale Meldeeingang kennt nur die Zustände "Spannung vorhanden" = EIN oder "keine Spannung vorhanden" = AUS, kann also nur ermitteln, dass eine Spannung verfügbar ist, nicht jedoch den Spannungswert. Ein typischer Anwendungsfall wäre ein Taster oder die Meldung, dass eine Heizung im KFZ eingeschaltet wurde.

Der analoge Meldeeingang ermittelt kontinuierlich jeden Wert *stufenlos* zwischen einem Minimum und einem Maximum. Theoretisch ist es möglich, beliebig kleine Signaländerungen zu ermitteln, üblicher Weise wird die Genauigkeit wie auch das Zeitintervall der Messung auf sinnvolle Werte beschränkt.

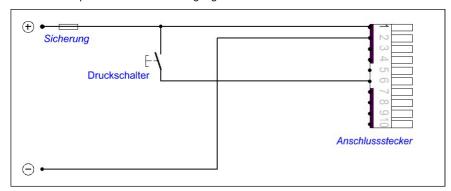
6.5.3 Änderung der digitalen / analogen Charakteristika der Meldeeingänge

Digitale Meldeeingänge können bei Bedarf zu analogen Meldeeingängen geändert werden wie auch umgekehrt, da der Mikroprozessor für die Auswertung der Meldeeingänge entsprechend programmiert werden kann. Bitten Sie ggf. Ihren Kundenbetreuer um Hilfe.

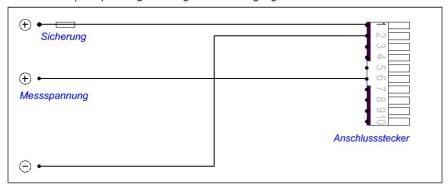
6.5.4 Digitaler Meldeeingang PIN 5 und PIN 6

PIN	Kabelfarbe	Beschreibung	KFZ Klemmbelegung
5	Weiß	Meldeeingang 1 (dig1 = ein/aus)	optional
6	Grau	Meldeeingang 2 (dig2 = ein/aus)	optional

Digitale Meldeeingänge können elektrische Spannungen erkennen und sind über einen hochohmigen Widerstand und einer Schutzschaltung mit dem Mikroprozessor verbunden. Der digitale Meldeeingang kennt nur die Zustände "Spannung vorhanden" = EIN oder "geringe bzw. keine Spannung vorhanden" = AUS.


Charakteristika der Spannungspegel der Meldeeingänge an PIN 5 und PIN 6:

Defaulteinstellung digital
 Eingangswiderstand ca. 47 kΩ


Meldeeingang
AUS = 0 Volt bis + 8,3 Volt

Meldeeingang
 EIN = + 8,3 Volt bis max. + 33 Volt, ca. 0,2 mA

Anschlussbeispiel Taster am Meldeeingang PIN 6:

Anschlussbeispiel Spannungsmeldung am Meldeeingang PIN 6:

6.5.4.1 Übermittlung und Auswertung der digitalen Meldung

Die digitale Meldung wird nicht gespeichert und nur übermittelt, wenn die Zündung des Fahrzeuges eingeschaltet ist. Das Meldeereignis steht im Online Service Center (OSC) zur Auswertung ohne gesonderten Status zur Verfügung.

6.5.5 Analoge Meldeeingänge PIN 9 und PIN 10

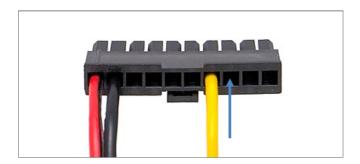
PIN	Kabelfarbe	Beschreibung	KFZ Klemmbelegung
9	Violett	Meldeeingang 5 (ana1 = analog)	optional
10		Meldeeingang 6 (ana2 = analog)	optional

Analoge Meldeeingänge können elektrische Spannungen erkennen und sind über einen hochohmigen Widerstand und einer Schutzschaltung mit dem Mikroprozessor verbunden. Der analoge Meldeeingang ermittelt kontinuierlich jeden Wert stufenlos zwischen einem Minimum und einem Maximum des Messbereiches.

Charakteristika der Spannungspegel:

Defaulteinstellung analog
 Eingangswiderstand ca. 47 kΩ
 Messbereich 0 bis + 33 Volt

Auflösung (Genauigkeit)
 10 Bit


6.5.5.1 Übermittlung und Auswertung der analogen Meldung

Die analoge Meldung wird nicht gespeichert und nur übermittelt wenn die Zündung des Fahrzeuges eingeschaltet wurde und steht im Online Service Center (OSC) zur Auswertung ohne gesonderten Status zur Verfügung.

6.6 Alarmeingang (optional)

Die Meldeeingänge werten elektrische Spannungen aus und melden den Wert der Messspannung dem Empfänger, also zum Online Service Center (OSC).

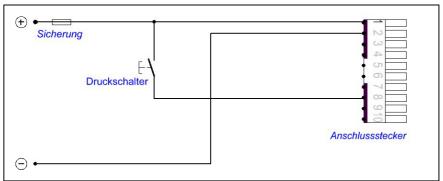
6.6.1 Begutachtung des gelieferten Anschlusskabels

Das Buchsengehäuse des Anschlusskabels wird an den in der Abbildung blau markierten PIN's mit einem zusätzlichen Kabel bestückt. Stecken Sie das ggf. lose gelieferte blaue Crimpkabel in das Buchsengehäuse des Anschlusskabels in die markierte Position PIN 8 (siehe Markierung) ein. Die Crimpkabel (Blau) erhalten Sie von Ihrem Fachhändler.

6.6.2 Alarm Meldeeingang PIN 8

PIN	Kabelfarbe	Beschreibung	KFZ Klemmbelegung
8	Blau	Meldeeingang 4 (alert = an/aus)	optional

Der digitale Alarm Meldeeingang kann elektrische Spannungen erkennen und ist über einen hochohmigen Widerstand und einer Schutzschaltung mit dem Mikroprozessor verbunden.


Charakteristika der Spannungspegel des Alarm Meldeeingangs PIN 8:

Defaulteinstellung digital
 Eingangswiderstand ca. 47 kΩ

Meldeeingang
AUS = 0 Volt bis + 8,3 Volt

Meldeeingang
EIN = + 8,3 Volt bis max. + 33 Volt, ca. 0,2 mA

Anschlussbeispiel Alarmtaster am Alarmmeldeeingang PIN 8:

6.6.2.1 Übermittlung und Auswertung der Alarm Meldung

Eine Alarm Meldung wird sofort zum Online Service Center (OSC) übermittelt und steht zur Auswertung als gesonderter Status zur Verfügung. Ist die Zündung des Fahrzeuges ausgeschaltet oder befindet sich das TELEMATIK SYSTEM im Ruhezustand, wird selbständig eine GPRS Datenverbindung aufgebaut und die Alarm Meldung mit Position und Zeit übermittelt.

6.7 Anschlusskabel, Übersicht

Anschlusskabel, vollständige Belegung (so nicht im Lieferumfang)						
PIN	Kabelfarbe	Beschreibung	KFZ Klemmbelegung			
1	Rot	Spannungsversorgung (+ 10 bis + 28 Volt DC, Gleichspannung)	Klemme 30			
2	Schwarz	GND, Masse	Klemme 31, Massekabel im KFZ meist Braun			
3	Grün	potentialfreier Schaltausgang				
4	Grün	(Normalzustand offen) max. 33 Volt AC/DC, max. 1 Ampere)	optional			
5	Weiß	Meldeeingang (dig1 = ein/aus)	optional			
6	Grau	Meldeeingang (dig2 = ein/aus)	optional			
7	Gelb	Meldeeingang zur Auswertung der Zündungssituation	Klemme 15, Kabel im KFZ auch schwarz			
8	Blau	Alarm-Meldeeingang (alert = ein/aus)	optional			
9	Violett	Meldeeingang (ana1 = analog)	optional			
10	Rosa	Meldeeingang (ana2 = analog)	optional			

7. ALLGEMEINE BEDIENUNG

7.1 Bedienelemente

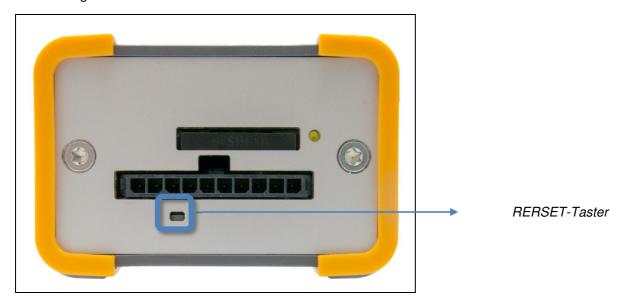
Das TELEMATIK SYSTEM ist mit folgenden Bedienelementen ausgestattet:

- Status-LEDs
- RESET-Taster

7.1.1 Status-LEDs

Die beiden Status-LEDs zeigen Informationen über den Betriebszustand relevanter Komponenten des TELEMATIK SYSTEMS an.

Status-LEDs im Betriebszustand				
	LED-Farbe	Beschreibung		
	Rot	GSM noch nicht bereit		
	Rot blinkend	Keine SIM-Karte eingesetzt oder SIM-Karte nicht erkannt		
GSM-LED	Celb	Das GSM-Modem hat sich in eine Mobilfunkzelle mit einer Feldstärke zwischen 10 und 19 eingebucht		
	Grün	Das GSM-Modem hat sich in eine Mobilfunkzelle mit einer Feldstärke von 20 oder besser eingebucht (max. 31)		
	Rot	Spannungsversorgung geringer als 8,3 Volt		
Power-LED	Celb	Spannungsversorgung zwischen 8,3 und 10 Volt		
	Grün	Es steht eine ausreichende Spannungsversorgung (mehr als 10 Volt) zur Verfügung		
	AUS	Die GPS-Komponente ist anfangs ausgeschaltet und wird erst eingeschaltet, wenn das GSM-Modem eine Datenverbindung hergestellt hat		
SAT-LED	Rot	GPS eingeschaltet, aber noch nicht bereit		
	Grün	Es steht ein gültiges GPS Satelliten-Signal zur Verfügung		
	AUS	Im aktivierten Energiesparmodus sind sowohl GPS- Receiver wie auch GPS-Antenne ausgeschaltet		


Meldungen der Status-LEDs während der kurzen Initialisierungsphase bzw. nach einem RESET finden Sie unter dem folgenden Querverweis

⇒ siehe Seite 28 Erstinbetriebnahme

Wenn die beiden LEDs grün leuchten, ist der Betriebszustand erreicht. Für Diagnosezwecke und Fehlerbehebungen notieren Sie bitte die nicht Grün leuchtenden LEDs und informieren Ihren Kundenbetreuer.

7.1.2 RESET-Taster

Um eine ungewollte Bedienung auszuschließen, ist dieser Taster versenkt montiert und kann nur mit einem kleinen spitzen Gegenstand z.B. einer aufgebogenen Büroklammer betätigt werden. Es wird dabei ein Hardware-RESET ausgelöst, alle Systemkomponenten werden neu gestartet. Ein RESET ist beispielsweise notwendig, wenn die SIM-Karte ausgewechselt wurde oder der Tarif der SIM-Karte geändert wurde.

7.2 Erstinbetriebnahme

Das TELEMATIK SYSTEM ist mit einer SIM-Karte zu versehen. Wenn Sie das TELEMATIK SYSTEM zusammen mit einer SIM-Karte von Ihrem Fachhändler bezogen haben, ist die SIM-Karte bereits in das SYSTEM eingesetzt worden und das SYSTEM wurde überprüft und vorkonfiguriert. Sie können dann die nachfolgenden beiden Querverweise überspringen.

⇒ siehe Seite 12 Vorbereitung der SIM-Karte

Möchten Sie die SIM-Karte prüfen, nehmen Sie die SIM-Karte bitte **nicht** aus dem System heraus, gehen Sie bitte anhand des folgenden Querverweises vor.

⇒ siehe Seite 13 Funktionsüberprüfung der SIM-Karte

Montieren Sie die beiden mitgelieferten Antennen an einer geeigneten Position im Fahrzeug und verbinden die beiden Antennen und das Anschlusskabel mit dem TELEMATIK SYSTEM.

- ⇒ siehe Seite 14 Montageposition der Antennen
- ⇒ siehe Seite 8 GPS und GSM-Antennenschluss
- ⇒ siehe Seite 18 Spannungsversorgung

Wenn das TELEMATIK SYSTEM an die Spannungsversorgung angeschlossen wird, beginnt das System sich **selbständig zu initialisieren**, indem der Bootloader gestartet wird. Der Bootloader startet dann die eigentliche Firmware.

Die Status-LEDs zeigen den Fortschritt beim Systemstart an und geben für Diagnosezwecke Auskunft über bereits gestartete Komponenten.

Status LEDs bei der Initialisierung / Neustart				
LED-Farben	Beschreibung			
Gelb Gelb Gelb	Der Bootloader wird initialisiert, alle LEDs blitzen nacheinander kurz auf.			
Gelb Rot Gelb	Der interne Speicher wird formatiert, die mittlere LED blinkt rot die beiden anderen LEDE blinken für die Dauer des Vorgangs melb. Dauer, nur wenn erforderlich ca. 90 Sekunden.			
Gelb Grün Gelb	Der Speichercache wird eingelesen, die mittlere LED blinkt grün, die holden anderen LEDs blinken für die Dauer des Vorgangs gelb. Dauer ca. 15 Sekunden.			
Rot Grün Aus	Die Komponenten GSM und kurz danach GPS werden gestartet. Weitere Informationen, siehe Tabelle "Betriebszustand".			

7.3 Betriebsbereitschaft

Die Betriebsbereitschaft des TELEMATIK SYSTEM ist gewährleistet, wenn sich das System erfolgreich im GSM-Mobilfunknetz eingebucht hat und über die GPS-Antenne Signale von mindestens drei Satelliten empfangen werden. Die äußeren beiden Status-LEDs leuchten damit **Grün**. Informationen über die Status-LEDs im Betriebszustand finden Sie unter dem folgenden Querverweis.

⇒ siehe Seite 27 Status-LEDs

Mit Einschalten der Zündung im Kraftfahrzeug werden die ermittelten Positionsdaten sowie Situationen des Meldeeinganges regelmäßig zum Online Service Center (OSC) übertragen.

Das TELEMATIK SYSTEM prüft selbständig den Betriebszustand aller Komponenten und startet die Komponenten GSM-Modem und GPS-Empfänger wie auch die gesamte Systemplatine bei Bedarf neu. Dazu wird eine spezielle Funktion des Mikroprozessors verwendet. Die Anzahl der Systeminitialisierungen wird für Servicezwecke protokolliert.

7.3.1 Systemprogrammierung

Der Funktionsumfang des TELEMATIK SYSTEM wird lediglich durch die Version der Betriebssoftware (Firmware) bestimmt, die in Form einer Programm-Datei (Hex-File) in den nichtflüchtigen Speicher (Flash-ROM) geschrieben wird. Zur direkten Initialisierung ist keine zusätzliche Software notwendig. Die Änderung und Eingabe von Parametern erfolgt mittels SMS-Kurznachrichten.

⇒ siehe Seite 36 Übersicht der SMS-Befehle

Alle Parameter werden auf dem Mikroprozessor gespeichert. Der Mikroprozessor verfügt über einen kleinen Speicherbereich, der für diese Funktion genutzt wird.

7.3.2 Update der Betriebssoftware

Das TELEMATIK SYSTEM wird mit einer ausgiebig getesteten Betriebssoftware (Firmware) ausgeliefert. Diese Firmware wird weiterentwickelt und gegebenenfalls um neue Funktionen erweitert. Informationen über neu eingepflegte Funktionen finden Sie im aktuellen Handbuch und im Internet auf unserem Entwicklungsportal unter:

⇒ https://wiki.arteco.de/wiki/Firmware Versions

Bei Zusendung des TELEMATIK SYSTEMS an den Hersteller wird die aktuelle Firmware kostenlos aufgespielt. Die aktuelle Firmware kann des Weiteren über das GPRS Datennetz als Fernupdate übertragen werden. Kontaktieren Sie zum Aufspielen der aktuellen Firmware bitte Ihren Kundenbetreuer.

Der Ausbau des TELEMATIK SYSTEMS und die Zusendung zum Hersteller kann durch ein Fernupdate vermieden werden.

Nach einem Firmwareupdate verwendet das TELEMATIK SYSTEM die im Mikroprozessor gespeicherten Einstellungen und Parameter weiter.

7.4 Energiespar-Modus

Das TELEMATIK SYSTEM kann in den Betriebszustand Energiesparmodus versetzt werden. Im Energiespar-Modus verringert sich der Strombedarf auf weniger als 25 mA. Durch den niedrigen Verbrauch bei Stillstand des überwachten Objektes, ist das TELEMATIK SYSTEM hervorragend für den Einsatz in Kraftfahrzeugen geeignet.

Funktionsweise: Mit dem SMS-Befehl: ps 15 wird der Energiesparmodus fünfzehn Minuten nach Ausschalten der Zündung aktiviert. Die Spannungsversorgung des GPS-Empfängers und der GPS-Antenne werden dazu ausgeschaltet, die SAT-LED ist ebenfalls aus. Weiterhin wird der SMS-Befehl als Parameter im TELEMATIK SYSTEM gespeichert und zuverlässig angewandt, wenn die Zündung später wieder ausgeschaltet wird.

Durch die folgenden Ereignisse wird das TELEMATIK SYSTEM aus dem Energiesparmodus geweckt:

- das Einschalten der Zündung
- der integrierte Bewegungssensor ermittelt eine Bewegung

Den Energiesparmodus erkennen Sie an der nicht leuchtenden SAT-LED.

Manuelle Positionsabfragen sind auch bei aktivem Energiesparmodus möglich, da die GPS-Komponenten nach einer Positionsabfrage aus dem Energiesparmodus geweckt werden und dadurch eine aktuelle Ortungsposition ermittelt wird.

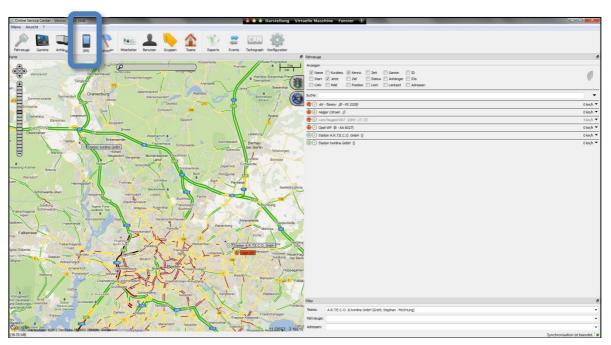
7.5 Lithium Ionen Akku

Das TELEMATIK SYSTEM ist mit einem Lithium Ionen Akku ausgestatten und kann dadurch nach Ausfall der Spannungsversorgung des Kraftfahrzeuges für ca. einen Tag aktuelle Positionsmeldungen übermitteln. Der Akku wird automatisch geladen, wenn das TELEMATIK SYSTEM an eine Spannungsquelle angeschlossen ist. Wir empfehlen, den Akku nach 5 Jahren Betriebsdauer gegen einen Neuen auszutauschen.

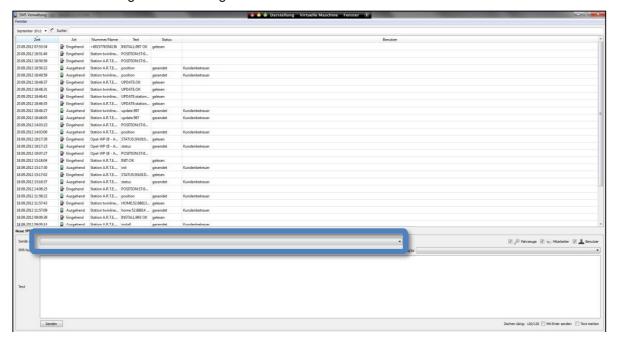
8. SMS - BEFEHLE

Das TELEMATIK SYSTEM wird mit SMS-Befehlen konfiguriert und gesteuert. Vertragskunden des Online Service Center (OSC) können die Konfiguration des TELEMATIK SYSTEMS komfortabel mit der Software OSC Professional, welche für Microsoft Windows (32 Bit), Mac (64 Bit) und Linux (64 Bit) entwickelt wurde, vornehmen.

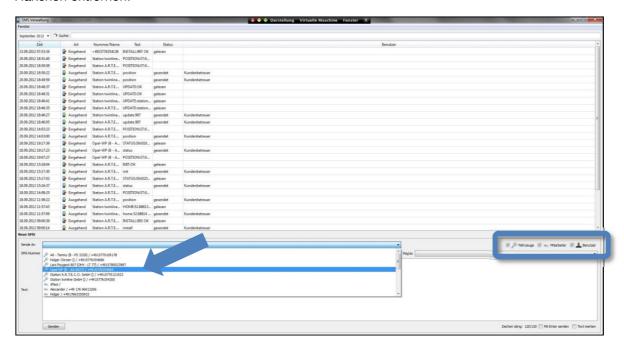
8.1 Allgemeines

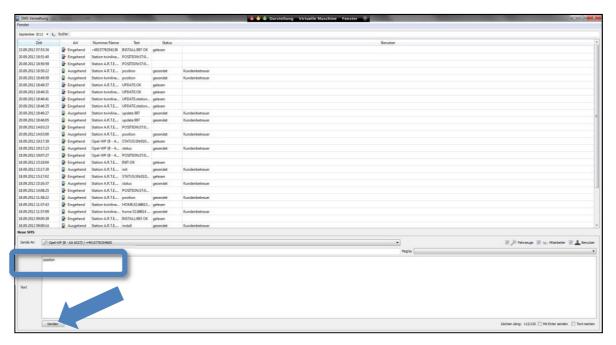


HINWEIS

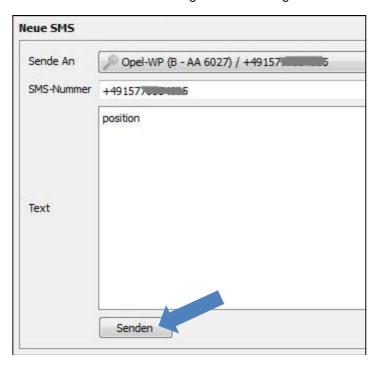

Die Trennung von SMS-Befehl und einem Parameter erfolgt durch ein Leerzeichen. Bei einigen SMS-Befehlen ist der Parameter notwendig. Innerhalb eines Befehls kann jeweils nur ein "SMS-Befehl" ausgewertet werden. Die Klammern in der nachfolgenden Befehlsauflistung sind in der Kommandozeile nicht mit einzugeben. Ungültige SMS-Befehle werden ignoriert, SMS-Befehle mit ungültigen Parametern werden mit dem Default-Wert ausgeführt.

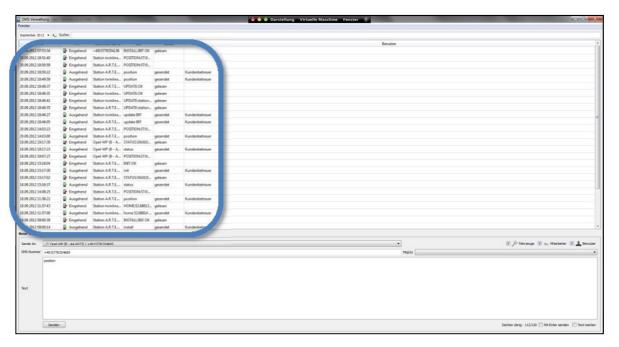
8.2 TELEMATIK SYSTEME konfigurieren

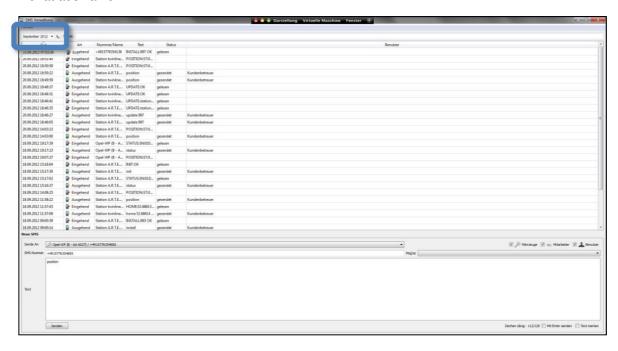

Nach der Anmeldung im Programm OSC Professional auf Ihrem Personal Computer mit Ihrem Benutzernamen und Passwort klicken Sie in der Werkzeugleiste auf das Symbol "SMS".



Die SMS-Verwaltung wird dadurch geöffnet.




In der SMS-Verwaltung wählen Sie in der Zeile "Sende An" ein bereits angelegtes Fahrzeug aus, indem Sie mit der Maus auf die Schaltfläche (Dropdown Liste) klicken und das gewünschte Fahrzeug markieren. Gegebenenfalls können Sie die Auswahl der angezeigten Objekte einschränken, indem Sie bei Fahrzeuge das Häkchen setzen und bei Benutzer und Mitarbeiter das Häkchen entfernen.



In das Feld "Text" tragen Sie den gewünschten SMS-Befehl ein, im Abbildungsbeispiel wurde der SMS-Befehl: position ins Textfeld eingetragen. Durch einen Klick auf den Button "Senden" wird die Nachricht versandt. Die folgende Abbildung stellt diese Situation vergrößert dar:

Im Nachrichtenfeld werden die versandten SMS-Befehle wie auch die eintreffenden Antworten aufgelistet. Sie können auch ältere Aktionen einsehen, indem Sie im Datumsfeld einen anderen Monat auswählen.

8.3 Befehlsliste

Da die SMS-Befehle laufend erweitert und ergänzt werden, finden Sie die aktuelle Auflistung im Internet auf unserem Entwicklungsportal unter:

⇒ https://wiki.arteco.de/wiki/Sms Commands

Optionale Parameter müssen nicht unbedingt angegeben werden und sind zur Veranschaulichung in eckigen Klammern eingeschlossen

Befehl [optionaler Parameter]

Notwendige Parameter sind dagegen in spitzen Klammern eingeschlossen
Befehl <erforderlicher Parameter>

Alternative Zustände sind durch eine Pipe getrennt, angewandt wird nur der zuletzt übermittelte Zustand

Befehl1|Befehl2|Befehl3|**Befehl4**|Befehl5

Befehl	Beschreibung
	-
on off ein aus	Schaltausgang wird geöffnet
<pre>br <usartid> <baudrate> [MODE]</baudrate></usartid></pre>	konfiguriert die <usartid> auf die <baudrate> und optional auf den [MODE] 0=binary 1=line based</baudrate></usartid>
bsdebug	gibt Debug-Infos zur Block Storage aus
normal live rtk dgps cmr	Ortung mit CMR-Korrektur
debug	sendet interne Debug Informationen
delete	for internal use only
<pre>device <id0>, <id1>, <id2>, <id3></id3></id2></id1></id0></pre>	zum Setzen der entsprechenden USART-Device-IDs
normal live rtk dgps cmr	Ortung mit DGPS-Korrektur
dn <number></number>	setzt die Fahrnummer
dv <string></string>	setzt die ID des Fahrers auf eine Garmin-Serial oder eine dem Fahrer zugeordnete ID-Nummer
ebdebug	stellt den Inhalt des GSM Event Buffers in der Konsole dar
on off ein aus	Schaltausgang wird elektrisch geschlossen
fc <threshold> <time> <ignition></ignition></time></threshold>	Konfiguration der Tanküberwachung <threshold> 1255 entspricht 0.1 bis 25.5 V Spannungsdifferenz 0:deaktiviert) <time> 1255 Sekunden 0:deaktiviert) <ignition> 0:immer 1:nur bei Zündung aus) Beispiel: fc 20 120 0</ignition></time></threshold>
fms <seconds></seconds>	setzt das Intervall zur Anforderung von FMS- Livedaten von externen CANgine2-Geräten <seconds> 165535 0:deaktiviert / Default:300 (5 Minuten)</seconds>
gcal	speichert die aktuellen Beschleunigungswerte als Referenz für die Neigungserkennung
ge <minutes></minutes>	setzt das GSM Escape interval in Minuten <minutes> 1255 0:deaktiviert / Default:5</minutes>
gi	liefert die Product-ID und Software-Version eines angeschlossenen Garmins
	setzt ein Intervall für periodisches automatisches Modem-Reset

```
qprs <USER>:<PASSWORD>@<ACCESS POINT NAME>
                         Konfiguration der GPRS Provider-Zugangsdaten
Beispiele:
gprs m2m:sim@m2m-net2.sa.t-mobile (Default seit 2013)
 gprs eplus:gprs@internet.eplus.de
 gprs eplus:gprs@internet.m2mplus.de
 gprs gps-system:t-d1@internet.t-d1.de
 gprs gps-system:D2@web.vodafone.de
 gprs gps-system:D2@m2m.vodafone.de
 gprs gps-system:02@internet
 gprs beeline:beeline@internet.beeline.ru
 gprs gps-system:orange@orange.lu
 gprs leer:leer@gprs.swisscom.ch
 gprs white:sim@m2mgw2.ic.t-mobile
 gprs mts:mts@internet.mts.ru
Hinweis:
              setzt die GPRS Konfiguration auf: ppp@Alplus.at:ppp@Al.net
gprs *A1*
                          schaltet das GPS-Modul aus
gpson | gpsoff
                          schaltet das GPS-Modul ein
gpson|gpsoff
                          startet das GSM-Modem neu
gsmreset
                          setzt die Zeit, nach der eine inaktive GPRS-
gt <MINUTES>
                          Verbindung getrennt wird
                          <MINUTES> 1...255 | 0:deaktiviert / Default:5
hb <MINUTES>
                          sendet alle <MINUTES> eine Position / Default:1440
                          setzt bei Geräten ohne GPS die Position, z.B.
home <LAT> <LON>
                          bei der Station
                          Konfiguration der Totzeit zwischen Hygrosens-Datensätzen
hs <SECONDS>
                          <SECONDS> 1..255 | 0:keine Totzeit
                          aktiviert Zündungserkennung über Fahrzeugspannung
ic <voltage
                          empfohlen:400 | 0:deaktiviert / Default:0
                          Initialisierung aller Default-Parameter und
init
                          Speicherung im EEPROM
                          aktualisiert die Software des STATION LCD auf
1cdupdate
                          die mit der Firmware mitgelieferten Version
                          System-Modus live
                           kein Abbau der GPRS-Verbindung bzw. sofortige
                          Neueinwahl auch ohne zu übertragende Daten
normal|live|rtk|dgps|cmr
                          (Achtung, erhöhter Stromverbrauch!)
                           - schnellere Behandlung von
                          Übertragungsausfällen mit Modemreset
                          ändert Bewegungserkennung, empfohlen:75
mc <VALUE>
                          | 0:deaktiviert / Default:0 (512 ca. 2G)
normal | live | rtk | dgps | cmr
                         Default System-Mode
                          Schaltausgang wird geöffnet
on|off|ein|aus
                          Schaltausgang wird elektrisch geschlossen
on|off|ein|aus
                          ändert Meldewert Spannungsausfall, empfohlen:
pc <VALUE>
                          250 (ca. 8V) | 0:deaktiviert / Default:0
                          sendet jede <SECONDS> eine Position
pi <SECONDS>
                          <SECONDS> 2...300 / Default:60
                          Versand einer SMS mit Seriennummer und
ping
                          Hardwaretyp zur Ermittlung der MSISDN
                          sendet die aktuelle Ortungsposition über den
position
                          Eingangskanal (z.B. SMS) und immer per GPRS
                          Energiesparmodus, schaltet nach "MINUTES" die
                          GPS und Stromversorgung der seriellen
ps <MINUTES>
                          Schnittstellen aus | 0:deaktiviert / Default:5
reset
                          for internal use only
                         GPRS aus dem Ausland erlauben / Default:no
roaming <YES|NO>
```

rs232gps <on off></on off>	verwendet RMC und GGA von der RS232 / Default:off	
normal live rtk dgps cmr	Ortung mit RTK-Korrektur	
slave <nummer> <id></id></nummer>	(setzen einer Slave-ID für RS485/BUSMASTER) <nummer> Speicherplatz der ID (15) <id> 16 Zeichen hex 0000000000000000:löschen</id></nummer>	
sp <intervall></intervall>	sendet alle <intervall> Sekunden einen Ortungsdatensatz (Live-Ortung) Beispiel: sp 1</intervall>	
status	sendet Informationen zum GSM und GPS Empfang	
stream <on off></on off>	NTRIP-Modem Modus / Default:off	
sysdata <on off></on off>	schaltet interne Debug/Fehler Informationen an, diese werden als Status 222 an das OSC gesendet	
tilt [ANGLE]	Konfiguration der Neigungserkennung [ANGLE] Schwellwert für die Neigungserkennung in Grad 1180 0:deaktiviert ohne Parameter: Abfrage des aktuellen Schwellwerts	
tz <hours></hours>	setzt den Zeitzonenversatz zu UTC um <hours> Beispiel für <i>Europe/Berlin</i>: Winterzeit: tz 1 Sommerzeit: tz 2</hours>	
uc <nummer></nummer>	verbindet die Konsole direkt mit USART 0,1,2,3	
update [VersionNumber]	installiert die Firmware [VersionNumber] update ohne Parameter installiert die aktuelle Version	
usartdebug [NUMMER]	liefert interne Informationen über die angegebene [NUMMER] 03 oder alle USARTs	
variable	sendet System-Variablen, ermöglicht somit die Anzeige der Provider-Zugangsdaten	
12von 12voff	Spannungsversorgung der Schnittstelle für Erweiterungen (12 Volt Serie) ausgeschalten	
12von 12voff	Spannungsversorgung der Schnittstelle für Erweiterungen (12 Volt Serie) eingeschalten / Default:on	
5von 5voff	Spannungsversorgung der Schnittstelle für Erweiterungen (5 Volt Serie) ausgeschalten	
5von 5voff	Spannungsversorgung der Schnittstelle für Erweiterungen (5 Volt Serie) eingeschalten / Default:on	

9. TECHNISCHE SPEZIFIKATION

9.1 Technische Daten TELEMATIK SYSTEM Tabora

Betriebsspannung: + 10 Volt bis + 28 Volt Gleichspannung (DC)

Abmessungen: 93 x 64 x 43 mm inkl. Anschlussbuchsen

Gewicht: ca. 200 Gramm

Akku: 1650 mAh Lithium Ionen, 3,7 Volt

Stromverbrauch: • im Betriebszustand ca. 60 mA bei 13.8 V

beim Einbuchen in das Mobilfunknetz und bei der

Datenübertragung ca.120 bis 200 mA im Energiespar-Modus ca. 25 mA

GSM-Empfänger: • Quadband 850, 900, 1800, 1900 MHz

GPRS class 10PBCCH supported

GSM Output Power: Class 4 (2 W) bei 850, 900 MHz

Class 1 (1 W) bei 1800, 1900 MHz

SIM-Karte: D-000 Format (25 x 15 mm)

1,8 V und 3 V SIM-Karten, keine 5 V SIM-Karten

GPS-Empfänger: ■ GPS L1 1575,42 MHz, C/A code

GLONASS L1 1602 - 1615,5 MHz, FDMA

QZSS L1-C/A signal

■ 32 Kanäle

Tracking sensitivity - 162 dBm typ.

Kaltstart ca. 35 s, Warmstart ca. 35s, Hotstart ca. 1 s

Mikroprozessor: ATMEGA 2560-16AU

Prozessor-Takt: 7,3728 MHz

Temperatur-Bereich: lagernd - 40°C ... + 80°C

in Betrieb - 20°C ... + 70°C

Digital In/Out: Eingangskontakt für Zündungserkennung

Alarm Eingangskontakt (optional) weitere 4 Eingangskontakte (optional) 2 RS232 Schnittstellen für Erweiterungen

1 Schaltausgang (optional)

CE-Kennzeichnung: das TELEMATIK SYSTEM erfüllt die notwendigen Bedingungen

der EN 55022 /12.2010 Klasse B und EN 55024 /11.2010

Typengenehmigung: (E_1) 10 R -

RoHS: Die RoHS-Richtlinie 2002/95/EG wird eingehalten.

Antennenanschlüsse: GSM = FME (m), GPS = SMA (f)

Pre Configuration: Firmware

Speicher: Flash-ROM, 16 MBit

speichert bis zu ca. 12.000 Positionsdaten

Kommunikation: SMS, GPRS

9.2 Technische Daten GSM-Antenne

Ausführung: Magnetfußantenne

Abmessungen: 31 mm (Durchmesser) x 72 mm (H)

Band: Multibandantenne (AMPS, ISM, GSM, DCS, PCS)

Polarisation: vertikal

Antennengewinn: 2,2 dBi

Impedanz: 50 Ohm

Kabellänge: 2,5 m

Anschluss: FME (f)

9.3 Technische Daten GPS-Antenne

Ausführung: aktive Aufsatzantenne

Abmessungen: $41 \times 34 \times 14 \text{ mm } (T/B/H)$

Band: GPS L1, 1575,42 MHz

GLONASS 1592 - 1610 MHz

Polarisation: RHCP

Verstärkung: 26 dB

Impedanz: 50 Ohm

Betriebsspannung: 2,7 - 5,0 V

Stromaufnahme: 15 - 25 mA

Kabellänge: 3 m

Anschluss: SMA (m)

AUSSENANTENNE

Die im Lieferumfang enthaltenen GSM und GPS-Antennen sind nicht für eine Montage außerhalb des Fahrzeuges vorgesehen. Die Magnethaftung des Antennenfußes ist für eine Außenmontage nicht ausreichend. Besorgen Sie sich gegebenenfalls spezielle Außenantennen.

9.4 GSM-Modem GL865

Cellular Engine GL865 Quad GSM-Modem für Telemetrie

Allgemeines

Im TELEMATIK SYSTEM wird zur Datenkommunikation ein Ouadband GSM-Modem des Herstellers Telit Communications S.p.A. eingesetzt.

Das GL865 Quad ist ein sprach- und datenfähiges GSM-Modem, das sowohl im 900-MHz- als auch im 1.800-MHz-Frequenzbereich (Mobilfunktelefonnetz) arbeitet und mit der technischen Spezifikation speziell auf Einsatzgebiete der Telemetrie optimiert ist.

Technische Spezifikation

siehe Datenblatt im Internet unter:

⇒ http://www.telit.com/module/infopool/download.php?id=3238

Weiter Informationen zum GSM-Modem erhalten Sie unter:

⇒ http://www.telit.com/products/product-service-selector/product-service-selector/show/product/gl865-quad/

9.5 GPS-Empfänger Jupiter SL869

Allgemeines

Das neue GPS-Empfänger Jupiter SL869 Herstellers Telit Communications S.p.A. unterstützt sowohl das US-amerikanische Satelliten-Navigationssystem GPS wie auch das russische GLONASS. 32-Kanal Der hochempfindliche Satellitenempfänger ermöglicht präzise und schnelle Positionsbestimmungen, auch unter schwierigen Umgebungsbedingungen, bei denen rein GPS-basierte Systeme Schwächen aufweisen. Häuserschluchten oder in Parkgaragen. Der Telit Jupiter SL869 verfügt über eine hohe Empfindlichkeit, geringen Strombedarf und kann in manchen Situationen sogar Positionen innerhalb von Gebäuden ermitteln.

Telit GL865-QUAD

IMEI: 356308040198290

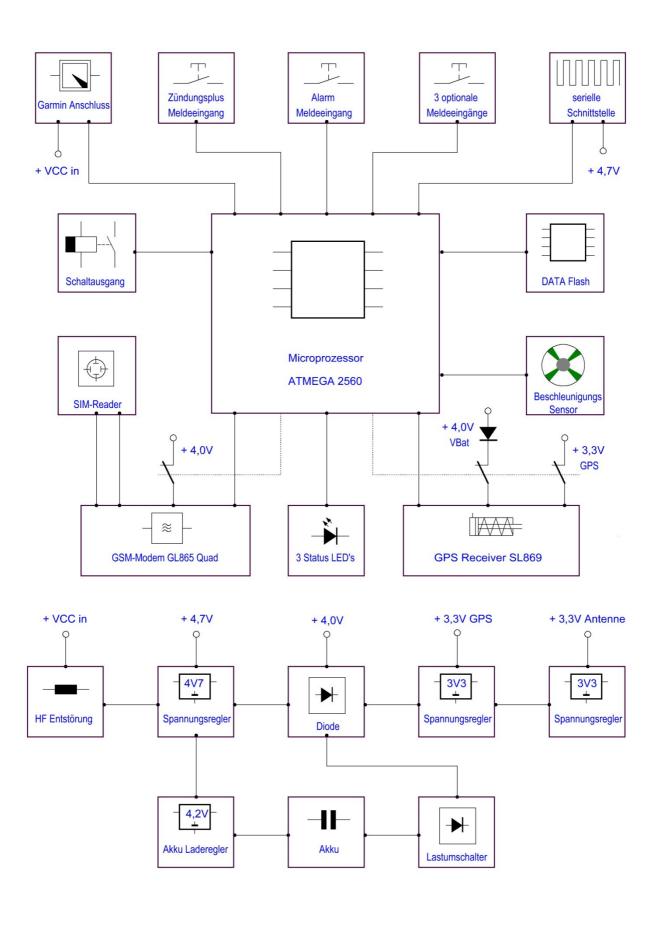
IC:5131A-GL865Q Designed in Italy, Made in China

春春春春春春

LOT:3311

ANATEL:2767-10-2618 FCC ID:RI7GL865Q

Technische Spezifikation


siehe Datenblatt im Internet unter:

⇒ http://www.telit.com/index.php?eID=tx nawsecuredl&u=0&g=0&t=1438357945&hash=795b14deac8f7 96a93c4e0b15bb679a66b3101d3&file=downloadZone/Telit Jupiter SL869 V2 Series Datasheet.pdf

Weitere Informationen zum GPS-Receiver erhalten Sie unter:

⇒ http://www.telit.com/products/product-service-selector/product-service-selector/show/product/jupiter-sl869-v2

9.6 Block Diagramm TELEMATIK SYSTEM

9.7 Protokollbeschreibung

9.7.1 allgemeines Datenprotokoll

Nachfolgend wird das vom TELEMATIK SYSTEM für die Übermittlung der Positionsdaten und Meldeereignissen verwendete Protokoll beschrieben. Anwendungsentwickler können damit eigene Anwendungen schreiben. Da das Protokoll laufend erweitert und ergänzt werden, finden Sie die aktuelle Auflistung im Internet auf unserem Entwicklungsportal unter:

⇒ https://wiki.arteco.de/wiki/Protocols

ecoTRA	.CK (qLive) - Protokollbeschreibung	
PG:	PaGe (page_id - block_id)	
ST:	STatus (siehe: Status-Nummern)	
TS:	TimeStamp (ddmmyyhhmmss)	
LO:	LOngitude (World X)	
LA:	LAtitude (World Y)	
DN:	Drive Number	
CS:	CourSe	
SP:	SPeed (Km/h)	
MX	MaX Speed	
KM:	KiloMeter	
IO:	<pre>InputOutput (accu, ana1, ana2, alert, dig1, dig2, pwr, ign, xout, yout, zout, relay)</pre>	
GQ	GSM Quality (1-31)	
SQ:	Satellite Quality (satcnt, accuracy)	
DV:	DriVer (ID-Chip oder Garmin Seriennummer)	
PV:	PriVate	
CK:	ChecKsum	
Beispi	el (ohne Zeilenumbruch):	
PG:1338-1137 ST:020 TS:031109221826 LO:13.523052 LA:52.553085 DN:48 CS:000 SP:000 MX:066 KM:1.6 IO:430,0,0,0,0,384,0,553,520,415 GQ:24 SQ:08,1.28 DV: PV:0 CK:14		

G-Sensor - Protokollbeschreibung		
PG:	PaGe (page_id - block_id)	
ST:	STatus (siehe: Status-Nummern)	
TS:	TimeStamp (ddmmyyhhmmss)	
LO:	LOngitude (World X)	
LA:	LAtitude (World Y)	
DN:	Drive Number	
PV:	PriVate	
UD:	User Data	
CK:	ChecKsum	

```
Beispiel (ohne Zeilenumbruch):

PG:1301-1327 ST:200 TS:291009173909 LO:13.522683 LA:52.553020 DN:1 PV:0

UD:[GALERT_X>499_Y<514_Z<510] CK:15
```

Trailer - Protokollbeschreibung			
PG:	PaGe (page_id - block_id)		
ST:	STatus (siehe: Status-Nummern)		
TS:	TimeStamp (ddmmyyhhmmss)		
LO:	LOngitude (World X)		
LA:	LAtitude (World Y)		
DN:	Drive Number		
PV:	PriVate		
UD:	User Data		
CK:	ChecKsum		
Beispiel (ohne Zeilenumbruch):			
PG:1296-1310 ST:209 TS:291009173530 LO:13.522773 LA:52.553040 DN:1 PV:0 UD:[TRAILER_0182721B0C000040] CK:11			

MAE -	Protokollbeschreibung	
PG:	PaGe (page_id - block_id)	
ST:	STatus (siehe: Status-Nummern)	
TS:	TimeStamp (ddmmyyhhmmss)	
LO:	LOngitude (World X)	
LA:	LAtitude (World Y)	
DN:	Drive Number	
PV:	PriVate	
UD:	User Data	
CK:	ChecKsum	
Beispi	el (ohne Zeilenumbruch):	
PG:1010-37 ST:210 TS:021109153559 LO:13.522632 LA:52.552959 DN:4 PV:0 UD:[MAE,811,159107228,159107228,0] CK:70		

Garmin - Protokollbeschreibung
Driver Status = GARMIN_SERIAL_NUMBER + STATUS_NUMBER
GARMIN_SERIAL_NUMBER (Seriennummer des Garmins)
STATUS_NUMBER (wird vom Benutzer im Garmin ausgewählt):
1 = ohne Ladung
2 = teilweise beladen
3 = beladen oder besetzt
4 = Achtung (Panne/Unfall)
5 = Stillstand/Stau

```
6 = Privatfahrt
7 = Dienstfahrt
8 = Pause
Driver ID = GARMIN_SERIAL_NUMBER + DRIVER_NAME
DRIVER_NAME (Freitext, vom Benutzer definiert)
```

Telema	tik Status - Protokollbeschreibung	
PG:	PaGe (page_id - block_id)	
ST:	STatus (siehe: Status-Nummern)	
TS:	TimeStamp (ddmmyyhhmmss)	
LO:	LOngitude (World X)	
LA:	LAtitude (World Y)	
SP:	Speed	
DN:	Drive Number	
PV:	PriVate	
UD:	User Data	
SN:	Serial Number	
SV:	Software Version	
ST:	System Typ [FIRST ALL LITTLE STATION UFO VARUNA TABORA]	
SM:	System Mode [NORMAL LIVE RTK DGPS CMR]	
GS:	GSM Infos	
GP:	GPS Infos	
RT:	Run Time (Days)	
SS:	System Starts	
BL:	BootLoader (0=alt 1=neu)	
DN:	Drive Number	
DI:	Device IDs (siehe Hardware-Erweiterungen)	
CK:	ChecKsum	
Beispiel (ohne Zeilenumbruch):		
PG:1003-13 ST:211 TS:031109132202 LO:13.522688 LA:52.552990 DN:4 PV:0 UD: SN:01E1AF1B0C000068 SV:2.10 T:ALL SM:NORMAL GS:E-Plus(21) GP:8(1.2) RT:0.004 SS:2 BL:1 DN:4 CK:96		

9.7.2 Statusnummern

Nachfolgend werden die vom TELEMATIK SYSTEM erzeugten Statusnummern beschrieben. Anwendungsentwickler können damit eigene Anwendungen schreiben. Da die Statusnummern laufend erweitert und ergänzt werden, finden Sie die aktuelle Auflistung im Internet auf unserem Entwicklungsportal unter:

⇒ https://wiki.arteco.de/wiki/Status Numbers

Status	- Nummern
000	Ortung
001	Timer (Heartbeat)
002	Sercam Heartbeat
005	fährt
007	hält (Geschwindigkeit unter 5 km/h
009	Liveortung
010	Zündung An
020	Zündung Aus
200	G-Sensor (extern RS232)
201	User Data (extern RS232)
202	Bewegung ohne Zündung (G-Sensor intern)
203	Alarmeingang
204	analog-1 (Schwellen)
205	analog-2 (Schwellen)
206	digital Low
207	digital High
208	Externe Spannung fehlt (Akku-Betrieb)
209	Trailer (extern RS232)
210	MAE (extern RS232)
211	Telematik Status (siehe: Telematik-Status-Beschreibung)
212	kein GPS
213	GPS ok
214	externer RS232 NMEA-GGA-String
215	Euroscan Temperatur und Türstatus (extern RS232)
216	CAN-Bus \$FMS1 (extern RS232)
217	CAN-Bus \$FMS2 (extern RS232)
218	CAN-Bus \$FMS3 (extern RS232)
219	CAN-Bus \$FMS4 (extern RS232)
220	RS232 (extern RS232 / Solaranlage)
221	RS485 (extern RS485 / Solaranlage)
222	System Daten (GSM Error, Buffer Overflow etc.)
223	Variablen (aktuelle Konfiguration)
224	GSM Zellen Informationen
225	DT Power Solarboard Statistik
226	GPRS Command Execution Response
227	CANgine2 FMS-Livedaten
228	Mobileye-Ereignis
229	Akku leer
230	M2M extern RS232 von COM0
231	M2M extern RS232 von COM1

232	M2M extern RS232 von COM2		
233	M2M extern RS232 von COM3		
234	Hygrosens TLOG20 Temperatur (extern RS232)		
235	Neigungs-Alarm (intern, siehe Kommandos <i>gcal</i> und <i>tilt</i>)		
300	Keitlinghaus Umweltservice / Ergebnis der Waage		
800	Arbeit Beginn		
801	Arbeit Ende		
810	Privat Ein		
811	Privat Aus		
820	Fahrer Ein		
821	Fahrer Aus		
830	Alarm		
840	Pause Beginn		
841	Pause Ende		
850	Kunde Beginn		
851	Kunde Ende		
860	Funktion-1		
861	Funktion-2		
862	Funktion-3		
900	Garmin used		
901	Garmin unused		
902	Garmin Messages		
903	Garmin Answers		
904	Garmin Stop Responses		
905	Garmin ETA Information		
906	Garmin Driver-ID		
907	Garmin Driver-Status		
950	New Message for/to Garmin		
951	New Stop for/to Garmin		

ANHANG

A.1 Allgemeines

A.1.1 NAVSTAR GPS-System

NAVSTAR - GPS (**NAV**igation **S**atellite **T**iming **A**nd **R**anging Global Positioning System) ist ein Satellitennavigationssystem, das im Auftrag des amerikanischen Pentagons 1983 in Betrieb genommen wurde.

Das hierfür genutzte Satellitensystem umfasst 27 Satelliten, die sich in sechs Bahnebenen bewegen und die Erde umkreisen. In kurzen Zeitabständen senden diese Satelliten ein Hochfrequenzsignal aus, das die Sendezeit, die Position und das Satellitenkennzeichen enthält. Alle Satelliten nutzen die gleichen Frequenzen und werden mittels Codemultiplexverfahren (CDMA) und darin eingesetzt Gold-Folgen unterschieden. Diese Signale können von GPS-Empfängern, deren Anzahl keiner Einschränkung unterliegt, aufgenommen und dekodiert werden.

Das GPS kann die Nutzer weltweit mit der Position (geographische Länge, Breite und Höhe) und Zeitinformationen mit bisher unerreichter Genauigkeit versorgen, sofern eine Sichtverbindung zumindest zu vier Satelliten (Normalfall) besteht.

Des Weiteren kann mit Hilfe der empfangenen Daten die Geschwindigkeit und die Richtung der Bewegung des Empfängers berechnet werden.

Nach Beendigung des kalten Krieges ab dem Jahr 2000 wurde das System NAVSTAR-GPS vom Verteidigungsministerium der USA (DoD - Department of Defence) für die zivile Nutzung unter der Bedingung von temporären bzw. territorialen Abschaltungen in Krisensituationen freigegeben.

Die Verlässlichkeit der Geschwindigkeitsmessung beträgt 0,2 Meter/Sekunde. Aus diesen Gründen planen derzeit mehrere Staaten ein ergänzendes, rein ziviles Satellitensystem für Positionsbestimmungen (Galileo, Compass).

A.1.2 GLONASS GPS-System

Das russische **GLONASS** (Globalnaja nawigazionnaja sputnikowaja sistema) ähnelt in Aufbau und Funktionsweise dem US-amerikanischen NAVSTAR-GPS. Die parallele und unabhängige Entwicklung des gleichwertigen Systems begann bereits 1972, die ersten Satelliten starteten 1982. Der Vollausbau mit 21 Standard- und drei Reservesatelliten wurde 1996 erreicht. Betrieben und finanziert wird GLONASS vom Verteidigungsministerium der Russischen Föderation.

Im Gegensatz zum GPS senden bei GLONASS alle Satelliten mit gleichem Code, aber auf unterschiedlichen Frequenzen.

2008 gab es die ersten zivil genutzten Geräte, die GLONASS unterstützten.

A.1.3 QZSS GPS-System

Das **QZSS** (Quazi-Zenit-Satelliten System) wurde speziell für Japan entworfen, deckt aber auch einige weitere asiatische/pazifische Gebiete incl. Australien ab. Es besteht aus drei geosynchronen Satelliten, weitere sollen bis 2020 folgen. Es wird als Gemeinschaftsprojekt von öffentlichen Institutionen und privatwirtschaftlichen Firmen betrieben.

A.1.4 Was sind Almanac-Daten?

Alle Informationen über die Satellitenkonstellation wie Standort, Richtung, Umlaufbahn,

Funktionsfähigkeit werden einmal von den Satelliten in den GPS-Empfänger übertragen und dort gespeichert. Die komplette Übertragung des Almanacs kann bis zu 12 Minuten dauern. Typischerweise erfolgt dies nur:

- bei Erstinbetriebnahme des GPS Empfängers
- beim Transport im ausgeschalteten Zustand über eine Distanz von mehr als 400 km
- wenn das Gerät längere Zeit ausgeschaltet war

A.1.5 Wie genau sind GPS-Daten

Die Genauigkeit der GPS-Daten wird vorrangig von der Anzahl der sichtbaren Satelliten beeinflusst. Als sichtbar wird ein Satellit bezeichnet, wenn er mehr als 10° über dem Horizont steht. Weiterhin wird die mögliche Genauigkeit durch einige Faktoren mit unterschiedlichen Auswirkungen eingeschränkt.

Die selektive Verfügbarkeit (SA) ist eine künstlich herbeigeführte Verschlechterung des kommerziellen bzw. zivilen GPS-Signals unter Kontrolle des amerikanischen Verteidigungsministeriums. Mit der selektiven Verfügbarkeit wurden Ungenauigkeiten erzeugt, welche durchaus 100 Meter erreichen konnten. Die selektive Verfügbarkeit wurde zum 02. Mai 2000 aufgehoben, kann aber in Krisenzeiten wieder angewandt werden.

Daneben ist die Satellitengeometrie, d.h. wie die einzelnen Satelliten räumlich zueinander ausgerichtet sind, ein wichtiger Faktor. Empfängt der GPS-Empfänger nur vier Satellitensignale und liegen diese alle im Norden und Westen des Empfängers, ist die Geometrie der Satelliten schlecht. Da in diesem Fall alle Messungen aus derselben Richtung kommen, ergibt sich eine schlechte Triangulation und der Bereich, in dem sich die Messungen schneiden, ist größer. Die Positionsbestimmung ist damit ungenauer als üblich.

Befindet sich der GPS-Empfänger in einem Fahrzeug in der Nähe von großen Gebäuden oder in engen Tälern, können GPS-Signale abgeschattet werden. Es stehen (plötzlich) weniger Satelliten zur Positionsermittlung zur Verfügung, die Genauigkeit sinkt dadurch. In Tunneln, Garagen, Carports und Parkhäusern steht teilweise kein Satellitensignal zur Verfügung bzw. das Signal ist nicht verwertbar. Der plötzliche Wegfall eines Satellitensignals kann zu einem sogenannten GPS-Sprung führen. Ein Fahrzeug, welches eigentlich still an einer Position steht, "springt" plötzlich mehrere hundert Meter weiter und ist kurze Zeit später wieder zurück.

Eine weitere Fehlerquelle sind Signalreflektionen an Gebäuden, Metallteilen oder Felswänden. Die Laufzeit des Signals wird verlängert und vom GPS-Empfänger in die Positionsdaten eingerechnet.

Im Umkreis von bis zu 30 km um starke Hochfrequenzsender kann es zum völligen Ausfall des Satellitensignals kommen (GPS-Loch).

Atmosphärische Effekte können die Laufzeit der Signale ebenfalls ungünstig beeinflussen, werden aber vom GPS-Empfänger kompensiert.

Der GPS-Betreiber gibt unter optimalen Bedingungen, also Freifläche ohne Bebauung, eine horizontale Positionsgenauigkeit mit besser als 13 Meter und eine vertikale Positionsgenauigkeit mit besser als 22 Meter pro Messung an. Laut Information des GPS-Betreibers liegt die durchschnittliche Verfügbarkeit des Systems bei 96%.

A.1.6 Begriff der Telematik

Der Oberbegriff TELEMATIK leitet sich aus den Inhalten der TELEKOMMUNIKATION und der INFORMATIK ab.

Er umfasst u.a. die Übertragung von Bild-, Ton- Text- und/oder anderen Informationen, die über einen Telekommunikationsweg - beispielsweise das Mobilfunknetz (GSM) - erfolgen.

Die Telematik kommt dort zum Einsatz, wo z.B. technische Prozesse, Zustände und Ereignisse aus der Ferne ausgelöst, gesteuert, kontrolliert, erfasst und abgesichert werden. Dabei handelt es sich nicht nur um eine einseitige Informationsübermittlung, sondern der Anwender kann (interaktiv) auf Grund der ihm übermittelten Daten/Informationen gezielt Steuerbefehle auslösen, die wiederum zu einem vordefinierten Systemverhalten führen.

Durch das wechselseitige Übermitteln dieser Daten/Informationen erfolgt zwischen dem technischen System und dem Anwender eine spezielle Form der Kommunikation.

A.1.7 SIM-Karte

Was versteht man unter einer SIM-Karte?

Eine SIM-Karte (**S**ubscriber Identity **M**odule) beinhaltet einen kleinen Prozessor mit Speicher und wird in ein Mobilfunktelefon oder GSM-Modem eingesetzt. Rufnummer, Zugangskennungen und weitere mobilfunknetzspezifische Daten sind auf der SIM-Karte gespeichert und authentifizieren die Karte im Mobilfunknetz eindeutig.

Größe und Betriebsspannung einer SIM-Karte

Die SIM-Karte wird im großen ID-1-Format (85,6 mm × 54 mm) ausgeliefert. Das kleinere ID-000-Format (25 mm × 15 mm) kann herausgebrochen werden. Des Weiteren gibt es Micro SIM-Karten, welche im TELEMATIK SYSTEM aber nicht verwendet werden. Ursprünglich wurden die SIM-Karten mit 5 Volt betrieben, heute werden SIM-Karten mit 1,8 Volt oder 3 Volt verwendet.

Speicherbereiche einer SIM-Karte

Auf der SIM-Karte können weitere Daten, wie Telefonbuchdaten, Notizbuch und SMS-Texte gespeichert werden. Der Speicher der SIM-Karte besteht aus einem ROM, einem RAM und einem EEPROM. Im ROM ist das Betriebssystem der Karte abgelegt. Auch werden dort Brandings der Mobilfunkunternehmen gespeichert (z. B. Startlogos). Das RAM beinhaltet die gerade gebrauchten Daten, es ist flüchtig. Im EEPROM werden Benutzerdaten abgelegt.

A.1.8 SMS-Kurznachrichten

Was ist eine SMS?

Bei einer SMS (Short Message Service) handelt es sich um eine einfache Text-Kurzmitteilung, bestehend aus max. 160 Zeichen, die heutzutage von jedem Mobilfunktelefon (Handy) an ein anderes Handy versendet werden kann. Diese Form der Informationsübermittlung an einen anderen Handy-Teilnehmer ist oft preiswerter, als ein normales Handy-Telefonat.

Wie funktioniert eine SMS?

Wird eine SMS von einem Handy aus versendet, läuft es wie folgt ab:

Am Handy wird der Menüpunkt "Neue Textmeldung" (oder "Neue Mitteilung", je nach Handytyp) ausgewählt und der Text der SMS und danach die Nummer der Empfängers eingegeben, an den die SMS gesendet werden soll. Damit versendet das Handy die SMS an die auf der SIM-Karte gespeicherte Nummer der SMS-Kurzmitteilungszentrale des jeweiligen Netzbetreibers.

Die SMS-Kurzmitteilungszentrale (SMSC)

Kurzmitteilungen werden nicht direkt an ein anderes Handy geschickt, sondern mit dem Umweg über eine Kurzmitteilungszentrale (Short Message Service Center (SMSC)). Diese SMS-Zentralnummer muss auf der SIM-Karte gespeichert sein, um überhaupt Kurzmitteilungen

verschicken zu können. Üblicher Weise ist diese Kurzmitteilungszentrale bereits auf jeder neu ausgelieferten SIM-Karte konfiguriert. Eine manuelle Eingabe der SMS-Zentralnummer ist daher nicht mehr notwendig.

Bei jeder SMS kann angegeben werden, wie lange diese in der SMS-Zentrale zwischengespeichert werden soll, wenn beispielsweise das Handy des SMS-Empfängers ausgeschaltet ist oder keine ausreichende GSM-Netzversorgung besteht. Damit übernimmt die SMS-Zentrale die ständige Kontrolle, ob der Empfänger wieder erreichbar ist. Die SMS wird nur dann dem Empfänger übermittelt, wenn dieser sein Handy eingeschaltet hat bzw. dessen Handy ins GSM-Mobilfunknetz eingebucht ist.

A.1.9 GPRS Datenkommunikation

Was versteht man unter GPRS?

GPRS ist ein spezielles System für die Übertragung von Informationen über das GSM-Netzwerk. Hierbei werden die Daten in einzelne Pakete aufgeteilt, wobei jedes dieser Pakete mit zusätzlichen Informationen versehen wird. Diese übermitteln dem Netzwerk, wie die einzelnen Pakete zusammenhängen und wer die Nachricht empfangen soll. Ermöglicht wird dies durch die IP(Internet Protokoll)-Technologie, die auch im Internet zum Einsatz kommt und eine Datenübertragung ohne eine direkte leitungsvermittelnde Verbindung zum Empfänger möglich macht. Mit Hilfe des GPRS-Protokolls können die Pakete durch verschiedene Kanäle des Netzwerks geleitet werden, was die Nutzung freier Kapazitäten ermöglicht. Die Pakete werden dann beim Empfänger in der richtigen Reihenfolge zu einem Ganzen zusammengefügt.

Wie funktioniert GPRS?

Die GSM-Funkkanäle sind in acht Zeitschlitze unterteilt, von denen jeder eine Datenübertragungsrate von 9,6 Kilobit pro Sekunde (kbit/s) hat. Bei einer normalen GSM-Datenübertragung belegt der Anwender während der kompletten Dauer seiner Verbindung einen Zeitschlitz und macht somit Gebrauch von den gesamten 9,6 kbit/s. Wenn alle GSM-Zeitschlitze belegt sind, können keine weiteren Personen auf die Netzwerk-Verbindungen zugreifen. Der Anwender muss unabhängig von der übertragenen Datenmenge bei einer normalen GSM-Datenübertragung für die gesamte Verbindungszeit, die für die Datenübertragung benötigt wird, zahlen.

Bei der GPRS-Technologie stehen die Zeitschlitze mehreren Nutzern gleichzeitig zur Verfügung. Damit kann, durch das Versenden individuell adressierter Informationspakete, die Kapazität des Netzwerks gezielter genutzt werden, beispielsweise in Übertragungspausen, die bei der herkömmlichen GSM-Datenübertragung ungenutzt bleiben würden. Zudem bietet dieses System ein effektiveres Kostenmanagement, da die Abrechnung nach Datenmenge und nicht nach Verbindungsdauer erfolgt.

Wie schnell ist GPRS?

Eine treibende Kraft für die Weiterentwicklung der Technologie ist mit Sicherheit das Erreichen einer höheren Übertragungsgeschwindigkeit, da die Anwender immer schneller auf größere Datenmengen zugreifen möchten. Dies wird bei GPRS durch die parallele Übertragung der Daten über mehrere Zeitschlitze erreicht. Theoretisch beträgt die Höchstgeschwindigkeit für GPRS bis zu 171,2 kbit/s, wenn alle acht Zeitschlitze vollständig genutzt werden könnten. Das wäre etwa dreimal so schnell wie die aktuelle Datenübertragung über das ISDN-Festnetz. Diese theoretische Geschwindigkeit wird in der Praxis jedoch nicht erreicht. Derzeit sind Datenraten von 40 bis 50 kbit/s realistisch. GPRS-Telefone sind in der Lage, mehr als einen Zeitschlitz für das Versenden und Empfangen von Daten zu nutzen. Am wahrscheinlichsten ist die Nutzung von drei oder vier

Zeitschlitzen für das Empfangen von Daten und der Nutzung eines Zeitschlitzes für das Versenden von Daten. Daraus folgt eine realistische Datenübertragungsrate von derzeit 13,4 kbit/s (1Tx bei Coding Schema 2) für das Versenden und ca. 40 kbit/s (3Rx / CS2) bzw. ca. 54 kbit/s (4Rx / CS2) für das Empfangen von Daten.

In der Praxis wird die Übertragungsgeschwindigkeit von GPRS von verschiedenen Faktoren abhängen. So haben die Datenmenge, die zeitgleich von mehreren Anwendern verschickt wird, die Konfiguration der Mobilfunktelefone, die GPRS unterstützende Infrastruktur, sowie das allgemeine Gesprächsaufkommen einen Einfluss auf die verfügbare Netzkapazität und damit auf die Geschwindigkeit.

A.2 SMS Kurzmitteilungszentrale (SMSC) einiger Mobilfunkbetreiber

Provider	SMSC		Provider	SMSC
T-Mobile D1	+49 171 076 00 00		Simyo	+49 177 061 00 00
E-Plus	+49 177 061 00 00		Vodafone (D2)	+49 172 227 00 00
O2	+49 176 000 04 43			
Alle Angaben ohne Gewähr und ohne Anspruch auf Vollständigkeit				

A.3 GPRS Zugangsdaten einiger Mobilfunkbetreiber

Provider	APN	Username	Passwort
D1-TELEKOM (m2m-Pool ab 2013)	m2m-net2.sa.t-mobile	m2m	sim
D1-TELEKOM	internet.t-d1.de	gps-system	t-d1
E-Plus (m2m Pool bis 2012)	internet.m2mplus.de	eplus	gprs
E-Plus (m2m Pool bis 2010)	internet.eplus.de	eplus	gprs
O2	internet	gps-system	O2
Simyo	internet.eplus.de	mms	GPRS
Vodafone (D2)	web.vodafone.de	gps-system	D2
Vodafone (D2)	m2m.vodafone.de	gps-system	D2
A1 (Österreich)	A1.net	ppp@A1plus.at	ppp
Orange 2 APN	internet	{leer lassen}	{leer lassen}
beeline	Internet.beeline.ru	beeline	beeline
Alle Angaben ohne Gewähr und ohne Anspruch auf Vollständigkeit			

HINWEIS

nachdem alle notwendigen GPRS Parameter konfiguriert wurden, muss das TELEMATIK SYSTEM neu initialisiert werden. Dazu ist das System kurz von der Spannungsquelle zu trennen oder der SMS-Befehl: reset zu verwenden.

TARIFWECHSEL

Nach einem Tarifwechsel durch den Mobilfunkprovider der SIM-Karte muss das TELEMATIK SYSTEM **kurzzeitig von der Spannungsquelle getrennt werden**, damit der neue Tarif für die SIM-Karte wirksam werden kann. Alternativ können Sie den SMS-Befehl: gsmreset verwenden.

B. Hinweise zur Problemlösung

PROBLEM

Die LEDs beginnen nach der Systeminitialisierung nicht zu blinken bzw. LEDs bleiben dunkel LÖSUNG

- Masseverbindung des Anschlusskabels prüfen, evtl. wurde der Massekontakt des Anschlusskabels (Schwarz) nicht mit der Fahrzeugmasse verbunden (schwimmende Masse). Beachten Sie bitte auch, dass bei Fahrzeugen, die nach DIN 72551 verkabelt wurden, die Farbe der Masseleitungen im Fahrzeug Braun ist.

PROBLEM

GSM Signal ungenügend, GSM-LED blinkt Rot

LÖSUNG

- Die SIM-Karte wurde evtl. falsch eingelegt oder ist aus der Halterung gerutscht. Bitte Position der SIM-Karte prüfen.
- Die SIM-Karte ist evtl. defekt, SIM-Karte entnehmen und in ein handelsübliches Mobilfunktelefon einlegen und SMS Versand prüfen. Eventuell gespeicherte SMS-Kurznachrichten löschen.
- Guthaben einer Prepaid-Karte überprüfen.

PROBLEM

GSM Signal ungenügend, GSM-LED bleibt Rot

LÖSUNG

- Anschluss des Antennensteckers überprüfen, ggf. Schraubverbindung gefühlvoll festziehen.
- Position der GSM-Antenne ändern, Antenne senkrecht montieren, Antenne mit dem Magnetfuß auf eine Metallfläche setzen um den Empfang zu verbessern, eine neue Antenne verwenden.
- Ändert sich der Zustand nicht, muss das TELEMATIK SYSTEM zur Reparatur gegeben werden.

PROBLEM

GPS Signal ungenügend, SAT-LED bleibt Rot

LÖSUNG

- Anschluss des Antennensteckers überprüfen, ggf. Schraubverbindung gefühlvoll festziehen.
- Die Initialisierung des GPS-Empfängers dauert erfahrungsgemäß bis zu 60 Sekunden. Nach längerer Betriebsunterbrechung benötigt das GPS Modul etwas länger (bis zu 150 Sekunden).
- Position des TELEMATIK SYSTEMS prüfen und ggf. ändern. Die GPS-Antenne muss möglichst "freie Sicht" zum Himmel haben, um optimalen Empfang der Satellitensignale zu gewährleisten. Daher darf die GPS-Antenne nicht unter metallischen Gegenständen oder elektromagnetisch abschirmenden Materialien / Folien angebracht werden.

PROBLEM

Bestätigungsmitteilung (Antwort-SMS mit "-ok") blieb aus

LÖSUNG

- Ungültige SMS-Befehle werden ignoriert, einige SMS-Befehle erfordern die Angabe eines Parameters, bitte die Syntax des SMS-Befehls prüfen.
- Wenn das TELEMATIK SYSTEM eine GPRS-Datenverbindung aufgebaut hat, werden SMS-Befehle erst ausgeführt, wenn die Verbindung beendet wurde.
- Bitte führen Sie eine Abfrage der Statusinformationen des TELEMATIK SYSTEMS zur Kontrolle des Betriebszustandes mit dem SMS-Befehlen status und variable durch.

INDEX

Abmaße	
GPS-Antenne	14, 40
GSM-Antenne	
TELEMATIK SYSTEM	15, 39
Akku	7
Lebensdauer	31
Alarm	
Alarm Meldeeingang (optional)	23, 25
Anschluss	
Anschlusskabel	10
GPS-Antenne	8
GSM-Antenne	8
RS232 Schnittstelle für Erweiterungen (12 Volt Serie)	8
RS232 Schnittstelle für Erweiterungen (5 Volt Serie)	9
Spannungsquelle	18
Zündungsplus	19
Anschlusskabel	
Alarm Meldeeingang (optional)	25
Belegung	18
Installation und Montage	16
Lieferumfang	17
Schaltausgang (optional)	20
Spannungsversorgung	18
weiterer Meldeeingang (optional)	
Zündungsplus	19
Antennenposition	14, 15
Ausgang	
Schaltausgang (optional)	20
Außerbetriebnahme	7
Batteriegesetz	7
Begriff	
Almanac	49
GLONASS	48
GPRS	51
GPS	48
NAVSTAR	48
SIM-Karte	50
SMS	50
Telematik	49
Betriebszustand	
Betriebsbereit	29
Energiespar-Modus	
Status-LED	
Bewegungssensor	
CANgine2	
CE-Kennzeichnung	

digitaler Tachograph (DTCO)	8
Einbau	
Anschlusskabel	16
Antennen	14
Fahrzeugeinbau	4
TELEMATIK SYSTEM	15
Energiespar-Modus	30
Akku	31
Entwicklung	8
Fehlersuche	54
Firmwareupdate	30
Garantie	4
Garmin	8
GLONASS	
Begriff	48
GPRS	
Begriff	51
Datenübertragung	11, 12
GPRS Zugangsdaten	52
GPS	
Almanac	48
Begriff	48
Genauigkeit	49
GPS-Antenne	
Empfang und Montage	14
Technische Daten	40
GPS-Empfänger	
Erstinbetriebnahme	49
Technische Daten	41
GSM-Antenne	
Empfang und Montage	15
Technische Daten	
GSM-Modem	
Technische Daten	41
Hinweis	
GPS-Antenne	14
Initialisierung	19
PIN-Nummer	
rechtlicher Hinweis	
Sicherheitshinweise	
Sicherung	18
SMS-Kurzmitteilungszentrale	
Syntax der SMS-Befehle	
, Tarifwechsel	
Installation	
Anschlusskabel Belegung	18
Anschlusskabel Lieferumfang	
Schnellverbinder	16

Stromdiebe	16
Kommunikationskosten	11
Konfiguration	
Liste der SMS-Befehle	36
Syntax der SMS-Befehle	
Lieferumfang	
Meldeeingang	
Alarm Meldeeingang (optional)	25
weiterer Meldeeingang (optional)	
Zündungsplus	
Montageposition	
GPS-Antenne	14
GSM-Antenne	
NAVSTAR	
Neustart	
PIN-Nummer	
Positionsausgabe	12
Genauigkeit	40
GPS-Sprung	
	49
Problemlösung Antannannasition	4.5
Antennenposition	
Hinweise	
Kabelverbindung	
Prüfung der SIM-Karte	
SIM-Karte PIN-Nummer	
Status-LED	•
Tarifwechsel	
Zündungsplus	
Projekte	
Remotedownload	
Reset	53
RS232 Schnittstelle für Erweiterungen	
digitaler Tachograph (DTCO)	8
Garmin	8
Schnellverbinder	16
serielle Schnittstelle für Erweiterungen	
digitaler Tachograph (DTCO)	8
Garmin	8
Seriennummer	11
Signalreflektionen	49
SIM-Karte	
Begriff	50
CallYa	12
einsetzen, austauschen	
Format	
GPRS	•
Guthaben-Karte	
PIN-Nummer	12

Rufumleitung deaktivieren	12
SMS	12
SMS-Kurzmitteilungszentrale	51, 52
Tarifwechsel	53
Zusatzkosten	11
SMS	
Begriff	50
SMS-Befehle	
Liste der SMS-Befehle	36
Syntax der SMS-Befehle	32
Software	
Firmwareupdate	30
OSCpc	32
Spannungsquelle	18
Status-LED Status-LED	
Betriebszustand	27
Initialisierung und Neustart	29
Stromdiebe	16
Systemstart	
Erstinbetriebnahme	30, 49
Technische Daten	
GPS-Antenne	40
GPS-Empfänger	41
GSM-Antenne	40
GSM-Moden	41
TELEMATIK SYSTEM	39
Telematik	
Begriff	49
TELEMATIK SYSTEM	
CE-Kennzeichnung	
Firmwareupdate	30
Seriennummer	
Typengenehmigung	
Überprüfung	
Antennenposition	
Prüfung der SIM-Karte	
SIM-Karte PIN-Nummer	12
Urheberschutz	4
Zubehör	
Crimpkabel (Blau)	
Crimpkabel (Grau)	
Crimpkabel (Grün)	
Crimpkabel (Rosa)	
Crimpkabel (Violett)	
Crimpkabel (Weiß)	
Kabeldose (12 Volt Serie - Garmin)	
Kabelstecker (5 Volt Serie)	10